The Morphology of TiO2 (B) Nanoparticles

被引:63
作者
Hua, Xiao [1 ]
Liu, Zheng [2 ]
Bruce, Peter G. [3 ]
Grey, Clare P. [1 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
[3] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
PAIR DISTRIBUTION FUNCTION; LITHIUM; SIZE; DIFFRACTION; CONVERSION; INSERTION; STORAGE; SHAPE;
D O I
10.1021/jacs.5b08434
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The morphology of a nanomaterial (geometric shape and dimension) has a significant impact on its physical and chemical properties. It is, therefore, esential to determine the morphology of nanomaterials so as to link shape with performance in specific applications. In practice, structural features with different length scales are encoded in a specific angular range of the X-ray or neutron total scattering pattern of the material. By combining small- and wide-angle scattering (typically X-ray) experiments, the full angular range can be covered, allowing structure to be determined accurately at both the meso- and the nanoscale. In this Article, a comprehensive morphology analysis of lithium-ion battery anode material, TiO2 (B) nanoparticles (described in Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 2164), incorporating structure modeling with small-angle X-ray scattering (SAXS), pair distribution function (PDF), and X-ray powder diffraction (XRPD) techniques, is presented. The particles are oblate-shaped, contracted along the [010] direction, this particular morphology providing a plausible rationale for the excellent electrochemical behavior of these TiO2(B) nanoparticles, while also provides a structural foundation to model the strain-driven distortion induced by lithiation. The work demonstrates the importance of analyzing various structure features at multiple length scales to determine the morphologies of nanomaterials.
引用
收藏
页码:13612 / 13623
页数:12
相关论文
共 50 条
[1]  
Agbabiaka A., 2013, J NANOPART, V2013, P11
[2]   EXPERIMENTAL-EVIDENCE FOR QUASIMELTING IN SMALL PARTICLES [J].
AJAYAN, PM ;
MARKS, LD .
PHYSICAL REVIEW LETTERS, 1989, 63 (03) :279-282
[3]   Demonstrating structural deformation in an inorganic nanotube [J].
Andreev, Yuri G. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) :9931-9934
[4]   The Shape of TiO2-B Nanoparticles [J].
Andreev, Yuri G. ;
Panchmatia, Pooja M. ;
Liu, Zheng ;
Parker, Stephen C. ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (17) :6306-6312
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]   Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study [J].
Arrouvel, Corinne ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4778-4783
[8]   Recent advances in LiFePO4 nanoparticles with different morphology for high-performance lithium-ion batteries [J].
Bi, Zhiying ;
Zhang, Xudong ;
He, Wen ;
Min, Dandan ;
Zhang, Wanshuo .
RSC ADVANCES, 2013, 3 (43) :19744-19751
[9]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[10]   Thermodynamics of Lithium in TiO2(B) from First Principles [J].
Dalton, Andrew S. ;
Belak, Anna A. ;
Van der Ven, Anton .
CHEMISTRY OF MATERIALS, 2012, 24 (09) :1568-1574