Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes

被引:83
作者
Ovid'ko, I. A. [1 ]
Sheinerman, A. G. [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
基金
美国国家科学基金会;
关键词
Nanocrystalline materials; Plastic deformation; Ductility; Grain boundary diffusion; STRAIN-RATE SENSITIVITY; NANOCRYSTALLINE MATERIALS; MECHANICAL-PROPERTIES; CREEP-BEHAVIOR; PLASTIC-DEFORMATION; TRIPLE JUNCTIONS; SUPERPLASTICITY; CERAMICS; STRENGTH; METALS;
D O I
10.1016/j.actamat.2009.01.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A theoretical model is which describes the combined effects of grain boundary (GB) sliding and diffusion oil strain hardening and ductility Of nanocrystalline materials (NCMS). Within the model. GB sliding creates disclination dipoles near triple junctions. inducing high elastic stresses and resulting ill pronounced strain hardening. At the same time. GB diffusion partly relieves disclination stresses. thereby decreasing strain hardening. It is theoretically shown that good ductility of NCMs can be reached due to optimizaton of GB sliding, and diffusion processes providing Optimum strain hardening. The latter suppresses plastic strain instability and thus enhances tensile ductility. At the same time. with the optimum strain hardening, the applied stresses reach their critical level at which NCMs fracture only if overall plastic strain is sufficiently large. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2217 / 2228
页数:12
相关论文
共 65 条
[1]  
[Anonymous], 1984, SUPERPLASTICITY IND
[2]   Near-perfect elastoplasticity in pure nanocrystalline copper [J].
Champion, Y ;
Langlois, C ;
Guérin-Mailly, S ;
Langlois, P ;
Bonnentien, JL ;
Hÿtch, MJ .
SCIENCE, 2003, 300 (5617) :310-311
[3]   Tensile properties of in situ consolidated nanocrystalline Cu [J].
Cheng, S ;
Ma, E ;
Wang, YM ;
Kecskes, LJ ;
Youssef, KM ;
Koch, CC ;
Trociewitz, UP ;
Han, K .
ACTA MATERIALIA, 2005, 53 (05) :1521-1533
[4]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[5]   Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J].
Dao, M. ;
Lu, L. ;
Asaro, R. J. ;
De Hosson, J. T. M. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (12) :4041-4065
[6]   SUPPRESSION OF CAVITY FORMATION IN CERAMICS - PROSPECTS FOR SUPERPLASTICITY [J].
EVANS, AG ;
RICE, JR ;
HIRTH, JP .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1980, 63 (7-8) :368-375
[7]   Plastic deformation mechanisms in nanocrystalline columnar grain structures [J].
Farkas, D ;
Curtin, WA .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 412 (1-2) :316-322
[8]   Analytical and computational description of effect of grain size on yield stress of metals [J].
Fu, HH ;
Benson, DJ ;
Meyers, MA .
ACTA MATERIALIA, 2001, 49 (13) :2567-2582
[9]   Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials [J].
Gutkin, M. Yu ;
Ovid'ko, I. A. ;
Skiba, N. V. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (21) :3921-3925
[10]   Strengthening and softening mechanisms in nanocrystalline materials under superplastic deformation [J].
Gutkin, MY ;
Ovid'ko, IA ;
Skiba, NV .
ACTA MATERIALIA, 2004, 52 (06) :1711-1720