Molecular energies of the improved Rosen-Morse potential energy model

被引:51
|
作者
Liu, Jian-Yi [1 ]
Hu, Xue-Tao [2 ]
Jia, Chun-Sheng [1 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Sch Petr Engn, Chengdu 610500, Peoples R China
来源
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE | 2014年 / 92卷 / 01期
基金
中国国家自然科学基金;
关键词
Schrodinger equation; improved Rosen-Morse potential model; Morse potential model; Cs-2; molecule; Na-2; INCLUDING CENTRIFUGAL TERM; L-STATE SOLUTIONS; DIATOMIC-MOLECULES; SCHRODINGER-EQUATION; VIBRATIONAL LEVELS; 3(3)SIGMA(+)(G) STATE; APPROXIMATE SOLUTIONS; FACTORIZATION METHOD; GROUND-STATE; CURVES;
D O I
10.1139/cjc-2013-0396
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We solve the Schrodinger equation with the improved Rosen-Morse empirical potential energy model. The rotation-vibrational energy spectra and the unnormalized radial wave functions have been obtained. The interaction potential energy curves for the 3(3)Sigma(+)(g) state of the Cs-2 molecule and the 5(1)Delta(g) state of the Na-2 molecule are modeled by employing the improved Rosen-Morse potential and the Morse potential. Favourable agreement for the improved Rosen-Morse potential is found in comparing with the Rydberg-Klein-Rees potential. The vibrational energy levels predicted by using the improved Rosen-Morse potential for the 3(3)Sigma(+)(g) state of Cs-2 and the 5(1)Delta(g) state of Na-2 are in better agreement with the Rydberg-Klein-Rees data than the predictions of the Morse potential.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 50 条
  • [21] Energy Spectra and Wave Function of Trigonometric Rosen-Morse Potential as an Effective Quantum Chromodynamics Potential in D-Dimensions
    Deta, U. A.
    Suparmi
    Cari
    Husein, A. S.
    Yuliani, H.
    Khaled, I. K. A.
    Luqman, H.
    Supriyanto
    4TH INTERNATIONAL CONFERENCE ON ADVANCES IN NUCLEAR SCIENCE AND ENGINEERING (ICANSE 2013), 2014, 1615 : 121 - 127
  • [22] Analytical solution of N-dimensional Klein-Gordon and Dirac equations with Rosen-Morse potential
    Ibrahim, T. T.
    Oyewumi, K. J.
    Wyngaardt, S. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (09): : 1 - 9
  • [23] Scattering States of l-Wave Schrodinger Equation with Modified Rosen-Morse Potential
    Chen, Wen-Li
    Shi, Yan-Wei
    Wei, Gao-Feng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (02) : 196 - 200
  • [24] Superstatistics of Modified Rosen-Morse Potential with Dirac Delta and Uniform Distributions
    Okorie, U. S.
    Ikot, A. N.
    Rampho, G. J.
    Sever, R.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (10) : 1246 - 1252
  • [25] Equivalence of the deformed Rosen–Morse potential energy model and Tietz potential energy model
    Chun-Sheng Jia
    Tao Chen
    Liang-Zhong Yi
    Shu-Rong Lin
    Journal of Mathematical Chemistry, 2013, 51 : 2165 - 2172
  • [26] Relativistic symmetries in the Rosen-Morse potential and tensor interaction using the Nikiforov-Uvarov method
    Ikhdair, Sameer M.
    Hamzavi, Majid
    CHINESE PHYSICS B, 2013, 22 (04)
  • [27] Molar enthalpy and heat capacity for symmetric trigonometric Rosen-Morse plus Pschl-Teller potential
    Onate, C. A.
    Akinpelu, J. A.
    Ajani, O. O.
    Deji-Jinadu, B. B.
    Aweda, F. O.
    Fashae, J. B.
    Jegede, O. O.
    SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 51 : 15 - 21
  • [28] The complete solution of the Schrödinger equation with the Rosen-Morse type potential via the Nikiforov-Uvarov method
    Gordillo-Nunez, Guillermo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 458
  • [29] Ladder operators and coherent states for the Rosen-Morse system and its rational extensions
    Garneau-Desroches, S.
    Hussin, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (47)
  • [30] Solutions of the Klein-Gordon equation with the improved Manning-Rosen potential energy model in D dimensions
    Chen, Xiao-Yu
    Chen, Tao
    Jia, Chun-Sheng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (04): : 1 - 7