High-resolution molecular karyotyping uncovers pairing between ancestrally related Brassica chromosomes

被引:33
作者
Mason, Annaliese S. [1 ,2 ]
Batley, Jacqueline [1 ,2 ]
Bayer, Philipp Emanuel [1 ,3 ]
Hayward, Alice [1 ,2 ]
Cowling, Wallace A. [4 ]
Nelson, Matthew N. [4 ,5 ]
机构
[1] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Integrat Legume Res, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Ctr Plant Funct Genom, Brisbane, Qld 4072, Australia
[4] Univ Western Australia, UWA Inst Agr, Crawley, WA 6009, Australia
[5] Univ Western Australia, Sch Plant Biol, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Brassica; meiosis; molecular karyotyping; polyploidy; recombination; HOMEOLOGOUS RECOMBINATION; INTERSPECIFIC HYBRIDS; NAPUS GENOME; MEIOSIS; PLANTS; REARRANGEMENTS; IDENTIFICATION; ORGANIZATION; IMPROVEMENT; POLYPLOIDY;
D O I
10.1111/nph.12706
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
<list list-type="bulleted" id="nph12706-list-0001"> How do chromosomal regions with differing degrees of homology and homeology interact at meiosis? We provide a novel analytical method based on simple genetics principles which can help to answer this important question. This method interrogates high-throughput molecular marker data in order to infer chromosome behavior at meiosis in interspecific hybrids. We validated this method using high-resolution molecular marker karyotyping in two experimental Brassica populations derived from interspecific crosses among B.juncea, B.napus and B.carinata, using a single nucleotide polymorphism chip. This method of analysis successfully identified meiotic interactions between chromosomes sharing different degrees of similarity: full-length homologs; full-length homeologs; large sections of primary homeologs; and small sections of secondary homeologs. This analytical method can be applied to any allopolyploid species or fertile interspecific hybrid in order to detect meiotic associations. This genetic information can then be used to identify which genomic regions share functional homeology (i.e., retain enough similarity to allow pairing and segregation at meiosis). When applied to interspecific hybrids for which reference genome sequences are available, the question of how differing degrees of homology and homeology affect meiotic interactions may finally be resolved.
引用
收藏
页码:964 / 974
页数:11
相关论文
共 40 条
  • [1] Amphidiploid Brassica juncea contains conserved progenitor genomes
    Axelsson, T
    Bowman, CM
    Sharpe, AG
    Lydiate, DJ
    Lagercrantz, U
    [J]. GENOME, 2000, 43 (04) : 679 - 688
  • [2] The cytogenetics of homologous chromosome pairing in meiosis in plants
    Bozza, C. G.
    Pawlowski, W. P.
    [J]. CYTOGENETIC AND GENOME RESEARCH, 2008, 120 (3-4) : 313 - 319
  • [3] Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars
    Cavanagh, Colin R.
    Chao, Shiaoman
    Wang, Shichen
    Huang, Bevan Emma
    Stephen, Stuart
    Kiani, Seifollah
    Forrest, Kerrie
    Saintenac, Cyrille
    Brown-Guedira, Gina L.
    Akhunova, Alina
    See, Deven
    Bai, Guihua
    Pumphrey, Michael
    Tomar, Luxmi
    Wong, Debbie
    Kong, Stephan
    Reynolds, Matthew
    da Silva, Marta Lopez
    Bockelman, Harold
    Talbert, Luther
    Anderson, James A.
    Dreisigacker, Susanne
    Baenziger, Stephen
    Carter, Arron
    Korzun, Viktor
    Morrell, Peter Laurent
    Dubcovsky, Jorge
    Morell, Matthew K.
    Sorrells, Mark E.
    Hayden, Matthew J.
    Akhunov, Eduard
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (20) : 8057 - 8062
  • [4] Trigenomic Bridges for Brassica Improvement
    Chen, Sheng
    Nelson, Matthew N.
    Chevre, Anne-Marie
    Jenczewski, Eric
    Li, Zaiyun
    Mason, Annaliese S.
    Meng, Jinling
    Plummer, Julie A.
    Pradhan, Aneeta
    Siddique, Kadambot H. M.
    Snowdon, Rod J.
    Yan, Guijun
    Zhou, Weijun
    Cowling, Wallace A.
    [J]. CRITICAL REVIEWS IN PLANT SCIENCES, 2011, 30 (06) : 524 - 547
  • [5] Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa
    Cheng, Feng
    Mandakova, Terezie
    Wu, Jian
    Xie, Qi
    Lysak, Martin A.
    Wang, Xiaowu
    [J]. PLANT CELL, 2013, 25 (05) : 1541 - 1554
  • [6] BRAD, the genetics and genomics database for Brassica plants
    Cheng, Feng
    Liu, Shengyi
    Wu, Jian
    Fang, Lu
    Sun, Silong
    Liu, Bo
    Li, Pingxia
    Hua, Wei
    Wang, Xiaowu
    [J]. BMC PLANT BIOLOGY, 2011, 11
  • [7] An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus (Asteraceae)
    Chester, Michael
    Lipman, Malorie J.
    Gallagher, Joseph P.
    Soltis, Pamela S.
    Soltis, Douglas E.
    [J]. CHROMOSOME RESEARCH, 2013, 21 (01) : 75 - 85
  • [8] Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae)
    Chester, Michael
    Gallagher, Joseph P.
    Symonds, V. Vaughan
    Cruz da Silva, Ana Veruska
    Mavrodiev, Evgeny V.
    Leitch, Andrew R.
    Soltis, Pamela S.
    Soltis, Douglas E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (04) : 1176 - 1181
  • [9] Gene flow from transgenic crops
    Chevre, AM
    Eber, F
    Baranger, A
    Renard, M
    [J]. NATURE, 1997, 389 (6654) : 924 - 924
  • [10] Accessing complex crop genomes with next-generation sequencing
    Edwards, David
    Batley, Jacqueline
    Snowdon, Rod J.
    [J]. THEORETICAL AND APPLIED GENETICS, 2013, 126 (01) : 1 - 11