The nonexpansive and mean nonexpansive fixed point properties are equivalent for affine mappings

被引:3
作者
Gallagher, Torrey M. [1 ]
Japon, Maria [2 ]
Lennard, Chris [3 ]
机构
[1] Monmouth Univ, Dept Math, West Long Branch, NJ 07764 USA
[2] Univ Seville, Fac Matemat, C Tarfia S-N, Seville 41012, Spain
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Fixed point property; nonexpansive mappings; mean nonexpansive mappings; metric spaces; Banach spaces; EXISTENCE;
D O I
10.1007/s11784-020-00830-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a convex subset of a Banach space X and let T be a mapping from C into C. Fix alpha = (alpha(1), alpha(2), ..., alpha(n)) a multi-index in R-n such that alpha(i) >= 0 (1 <= i <= n), 1 = Sigma(n)(i=1) alpha(i) = 1, alpha(1), alpha(n) > 0, and consider the mapping T-alpha : C -> C given by T-alpha = Sigma(n)(i-1) alpha T-i(i). Every fixed point of T is a fixed point for T-alpha but the converse does not hold in general. In this paper we study necessary and sufficient conditions to assure the existence of fixed points for T in terms of the existence of fixed points of T-alpha and the behaviour of the T-orbits of the points in the domain of T. As a consequence, we prove that the fixed point property for nonexpansive mappings and the fixed point property for mean nonexpansive mappings are equivalent conditions when the involved mappings are affine. Some extensions for more general classes of mappings are also achieved.
引用
收藏
页数:16
相关论文
共 36 条
[11]  
Gallagher TM, 2017, ADV OPER THEORY, V2, P1, DOI 10.22034/aot.1610.1029
[12]  
Gallagher TM, 2017, J NONLINEAR CONVEX A, V18, P73
[13]   The demiclosedness principle for mean nonexpansive mappings [J].
Gallagher, Torrey M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) :832-842
[14]  
Goebel K., 1984, Uniform convexity, hyperbolic geometry, and nonexpansive mappings
[15]  
Goebel K., 1979, COLLOQ MATH-WARSAW, V40, P259
[16]  
Goebel K., 2007, Proceedings of 8-th international conference on fixed point theory and applications
[17]  
Goebel K, 2010, CONTEMP MATH, V513, P157
[18]   Renormings and fixed point property in non-commutative L1-spaces II: Affine mappings [J].
Hernandez-Linares, Carlos A. ;
Japon, Maria A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5357-5361
[19]  
Jap?n Pineda, 1998, ABSTR APPL ANAL, V3, P343, DOI DOI 10.1155/S1085337598000591
[20]   FIXED-POINTS OF NONEXPANSIVE-MAPPINGS IN BANACH-LATTICES [J].
KHAMSI, MA ;
TURPIN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (01) :102-110