Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene

被引:80
作者
Kotakoski, Jani [1 ]
Brand, Christian [2 ]
Lilach, Yigal [3 ]
Cheshnovsky, Ori [3 ,4 ]
Mangler, Clemens [1 ]
Arndt, Markus [2 ]
Meyer, Jannik C. [1 ]
机构
[1] Univ Vienna, Fac Phys, PNM, A-1090 Vienna, Austria
[2] Univ Vienna, Fac Phys, VCQ, QuNaBioS, A-1090 Vienna, Austria
[3] Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, Israel
[4] Tel Aviv Univ, Raymond & Beverly Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Graphene; focused ion beam; amorphization; scanning transmission electron microscopy; IRRADIATION; ATOM;
D O I
10.1021/acs.nanolett.5b02063
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has many claims to fame: it is the thinnest possible membrane, it has unique electronic and excellent mechanical properties, and it provides the perfect model structure for studying materials science at the atomic level. However, for many practical studies and applications the ordered hexagon arrangement of carbon atoms in graphene is not directly suitable. Here, we show that the atoms can be locally either removed or rearranged into a random pattern of polygons using a focused ion beam (FIB). The atomic structure of the disordered regions is confirmed with atomic-resolution scanning transmission electron microscopy images. These structural modifications can be made on macroscopic scales with a spatial resolution determined only by the size of the ion beam. With just one processing step, three types of structures can be defined within a graphene layer: chemically inert graphene, chemically active amorphous 2D carbon, and empty areas. This, along with the changes in properties, gives promise that FIB patterning of graphene will open the way for creating all-carbon heterostructures to be used in fields ranging from nanoelectronics and chemical sensing to composite materials.
引用
收藏
页码:5944 / 5949
页数:6
相关论文
共 37 条
[1]   Structural manipulation of the graphene/metal interface with Ar+ irradiation [J].
Ahlgren, E. H. ;
Hamalainen, S. K. ;
Lehtinen, O. ;
Liljeroth, P. ;
Kotakoski, J. .
PHYSICAL REVIEW B, 2013, 88 (15)
[2]   Ion irradiation tolerance of graphene as studied by atomistic simulations [J].
Ahlgren, E. H. ;
Kotakoski, J. ;
Lehtinen, O. ;
Krasheninnikov, A. V. .
APPLIED PHYSICS LETTERS, 2012, 100 (23)
[3]   Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene [J].
Ahlgren, E. H. ;
Kotakoski, J. ;
Krasheninnikov, A. V. .
PHYSICAL REVIEW B, 2011, 83 (11)
[4]   Ion Implantation of Graphene-Toward IC Compatible Technologies [J].
Bangert, U. ;
Pierce, W. ;
Kepaptsoglou, D. M. ;
Ramasse, Q. ;
Zan, R. ;
Gass, M. H. ;
Van den Berg, J. A. ;
Boothroyd, C. B. ;
Amani, J. ;
Hofsaess, H. .
NANO LETTERS, 2013, 13 (10) :4902-4907
[5]  
Brand C., 2015, NATURE NANO IN PRESS
[6]   Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations [J].
Compagnini, Giuseppe ;
Forte, Giuseppe ;
Giannazzo, Filippo ;
Raineri, Vito ;
La Magna, Antonino ;
Deretzis, Iannis .
JOURNAL OF MOLECULAR STRUCTURE, 2011, 993 (1-3) :506-509
[7]   Ion irradiation and defect formation in single layer graphene [J].
Compagnini, Giuseppe ;
Giannazzo, Filippo ;
Sonde, Sushant ;
Raineri, Vito ;
Rimini, Emanuele .
CARBON, 2009, 47 (14) :3201-3207
[8]   A journey from order to disorder - Atom by atom transformation from graphene to a 2D carbon glass [J].
Eder, Franz R. ;
Kotakoski, Jani ;
Kaiser, Ute ;
Meyer, Jannik C. .
SCIENTIFIC REPORTS, 2014, 4
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Interfacial Carbon Nanoplatelet Formation by Ion Irradiation of Graphene on Iridium(111) [J].
Herbig, Charlotte ;
Ahlgren, E. Harriet ;
Jolie, Wouter ;
Busse, Carsten ;
Kotakoski, Jani ;
Krasheninnikov, Arkady V. ;
Michely, Thomas .
ACS NANO, 2014, 8 (12) :12208-12218