Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential

被引:9
作者
Merkl, F
Wüthrich, MV
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Winterthur Insurance, CH-8401 Winterthur, Switzerland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2002年 / 38卷 / 03期
关键词
D O I
10.1016/S0246-0203(01)01100-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the ground state energy of the random Schrodinger operator -1/2Delta + beta(logt)V-2/d on the box (-t, t)(d) with Dirichlet boundary conditions. V denotes the Poissonian potential which is obtained by translating a fixed non-negative compactly supported shape function to all the particles of a d-dimensional Poissonian point process. The scaling (log t)(-2/d) is chosen t\o be of critical order, i.e. it is determined by the typical size of the largest hole of the Poissonian cloud in the box (-t, t)(d). We prove that the ground state energy (properly rescaled) converges to a deterministic limit I(beta) with probability 1 as t --> infinity. 1(beta) can be expressed by a (deterministic) variational principle. This approach leads to a completely different method to prove the phase transition picture developed in [4]. Further we derive critical exponents in dimensions d less than or equal to 4 and we investigate the large-beta-behavior, which asymptotically approaches a similar picture as for the unsealed Poissonian potential considered by Sznitman [9]. (C) 2002 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:253 / 284
页数:32
相关论文
共 11 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Lieb E. H., 1997, ANALYSIS-UK, V14
[3]   Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential [J].
Merkl, F ;
Wüthrich, MV .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (04) :475-507
[4]  
Reed M., 1975, Fourier Analysis, Self-Adjointness
[5]  
REED M., 1979, Methods of Modern Mathematical Physics
[6]  
SIMON B., 1979, Functional Integration and Quantum Physics
[8]  
SZNITMAN AS, 1998, COMM PURE APPL MATH
[9]  
SZNITMAN AS, 1998, BROWNIAN MOTION
[10]   Moderate deviations for the volume of the Wiener sausage [J].
van den Berg, M ;
Bolthausen, E ;
den Hollander, F .
ANNALS OF MATHEMATICS, 2001, 153 (02) :355-406