A converging finite volume scheme for hyperbolic conservation laws with source terms

被引:9
作者
Santos, J
de Oliveira, P
机构
[1] Univ Aveiro, Dept Matemat, P-3810 Aveiro, Portugal
[2] Univ Coimbra, Dept Matemat, P-3000 Coimbra, Portugal
关键词
hyperbolic conservation laws; singular source term; dirac delta functions; finite volume methods; conservative numerical methods;
D O I
10.1016/S0377-0427(99)00146-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study convergence of numerical discretizations of hyperbolic nonhomogeneous scalar conservation laws. Particular attention is devoted to point source problems. Standard numerical methods, obtained by a direct discretization of the differential form, fail to converge, even in the linear case. We consider the equation in integral form in order to construct a class of convergent accurate methods. Numerical examples are included. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 9 条
[1]  
[Anonymous], 1970, MATH USSR SB
[3]   Analysis and approximation of conservation laws with source terms [J].
Greenberg, JM ;
Leroux, AY ;
Baraille, R ;
Noussair, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1980-2007
[4]  
Koren B, 1993, NOTES NUMERICAL FLUI, P117
[5]  
Kroner D., 1997, NUMERICAL SCHEMES CO
[6]   SYSTEMS OF CONSERVATION LAWS [J].
LAX, P ;
WENDROFF, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1960, 13 (02) :217-237
[7]  
LeVeque R. J., 1992, NUMERICAL METHODS CO
[8]   A STUDY OF NUMERICAL-METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH STIFF SOURCE TERMS [J].
LEVEQUE, RJ ;
YEE, HC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (01) :187-210
[9]   Finite-difference schemes for scalar conservation laws with source terms [J].
Schroll, HJ ;
Winther, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :201-215