On stability of exponential cosmological solutions with non-static volume factor in the Einstein-Gauss-Bonnet model

被引:41
作者
Ivashchuk, V. D. [1 ,2 ]
机构
[1] VNIIMS, Ctr Gravitat & Fundamental Metrol, 46 Ozyornaya Ul, Moscow 119361, Russia
[2] RUDN Univ, Peoples Friendship Univ Russia, Inst Gravitat & Cosmol, 6 Miklukho Maklaya Ul, Moscow 117198, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2016年 / 76卷 / 08期
基金
俄罗斯基础研究基金会;
关键词
TIME VARIATIONS; GRAVITY; SINGULARITY;
D O I
10.1140/epjc/s10052-016-4284-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A (n + 1)-dimensional gravitational model with Gauss-Bonnet term and a cosmological constant term is considered. When ansatz with diagonal cosmological metrics is adopted, the solutions with an exponential dependence of the scale factors, a(i) similar to exp (v(i)t), i = 1,..., n, are analyzed for n > 3. We study the stability of the solutions with non-static volume factor, i. e. if K(v) = Sigma(k = 1) (n) v(k) not equal 0. We prove that under a certain restriction R imposed solutions with K(v) > 0 are stable, while solutions with K(v) < 0 are unstable. Certain examples of stable solutions are presented. We show that the solutions with v(1) = v(2) = v(3) = H > 0 and zero variation of the effective gravitational constant are stable if the restriction R is obeyed.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
ADE PAR, 2014, ASTRONOMY ASTROPHYSI, V571, P2014
[2]   Accelerating cosmologies in the Einstein-Gauss-Bonnet theory with a dilaton [J].
Bamba, Kazuharu ;
Guo, Zong-Kuan ;
Ohta, Nobuyoshi .
PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (05) :879-892
[3]   MULTIDIMENSIONAL CLASSICAL AND QUANTUM WORMHOLES IN MODELS WITH COSMOLOGICAL CONSTANT [J].
BLEYER, U ;
IVASHCHUK, VD ;
MELNIKOV, VN ;
ZHUK, A .
NUCLEAR PHYSICS B, 1994, 429 (01) :177-204
[4]   TIME-VARIATION OF GRAVITATIONAL CONSTANT IN MULTIDIMENSIONAL COSMOLOGY [J].
BRONNIKOV, KA ;
IVASHCHUK, VD ;
MELNIKOV, VN .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1988, 102 (02) :209-215
[5]   Non-constant volume exponential solutions in higher-dimensional Lovelock cosmologies [J].
Chirkov, Dmitry ;
Pavluchenko, Sergey A. ;
Toporensky, Alexey .
GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (11)
[6]   Exact exponential solutions in Einstein-Gauss-Bonnet flat anisotropic cosmology [J].
Chirkov, Dmitry ;
Pavluchenko, Sergey ;
Toporensky, Alexey .
MODERN PHYSICS LETTERS A, 2014, 29 (18)
[7]   One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space [J].
Cognola, Guido ;
Elizalde, Emilio ;
Nojiri, Shin'ichi ;
Odintsov, Sergei D. ;
Zerbini, Sergio .
EUROPEAN PHYSICAL JOURNAL C, 2009, 64 (03) :483-494
[8]   ON THE APPROACH TO THE COSMOLOGICAL SINGULARITY IN QUADRATIC THEORIES OF GRAVITY - THE KASNER REGIMES [J].
DERUELLE, N .
NUCLEAR PHYSICS B, 1989, 327 (01) :253-266
[9]   Stationary vs. singular points in an accelerating FRW cosmology derived from six-dimensional Einstein-Gauss-Bonnet gravity [J].
Elizalde, E. ;
Makarenko, A. N. ;
Obukhov, V. V. ;
Osetrin, K. E. ;
Filippov, A. E. .
PHYSICS LETTERS B, 2007, 644 (01) :1-6
[10]   On exponential solutions in the Einstein-Gauss-Bonnet cosmology, stability and variation of G [J].
Ernazarov, K. K. ;
Ivashchuk, V. D. ;
Kobtsev, A. A. .
GRAVITATION & COSMOLOGY, 2016, 22 (03) :245-250