Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling

被引:46
作者
Yamawaki, Tracy M. [1 ]
Lu, Daniel R. [1 ]
Ellwanger, Daniel C. [1 ]
Bhatt, Dev [2 ]
Manzanillo, Paolo [2 ]
Arias, Vanessa [1 ]
Zhou, Hong [1 ]
Yoon, Oh Kyu [1 ]
Homann, Oliver [1 ]
Wang, Songli [1 ]
Li, Chi-Ming [1 ]
机构
[1] Amgen Res, Genome Anal Unit, 1120 Vet Blvd, San Francisco, CA 94080 USA
[2] Amgen Res, Oncol Inflammat, 1120 Vet Blvd, San Francisco, CA 94080 USA
关键词
Single cell; Transcriptomics; Single-cell RNA-seq; High throughput sequencing; Immune-cell profiling; SEQUENCING DATA; T-CELLS;
D O I
10.1186/s12864-020-07358-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5 ' v1 and 3 ' v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. Conclusion Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.
引用
收藏
页数:18
相关论文
共 38 条
[1]   M3Drop: dropout-based feature selection for scRNASeq [J].
Andrews, Tallulah S. ;
Hemberg, Martin .
BIOINFORMATICS, 2019, 35 (16) :2865-2867
[2]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[3]  
Darby C, 2020, INTEGRATED ANAL MULT
[4]  
Ding J, 2020, NAT BIOTECHNOL, V38, P737, DOI 10.1038/s41587-020-0465-8
[5]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[6]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[7]   Massively parallel nanowell-based single-cell gene expression profiling [J].
Goldstein, Leonard D. ;
Chen, Ying-Jiun Jasmine ;
Dunne, Jude ;
Mir, Alain ;
Hubschle, Hermann ;
Guillory, Joseph ;
Yuan, Wenlin ;
Zhang, Jingli ;
Stinson, Jeremy ;
Jaiswal, Bijay ;
Pahuja, Kanika Bajaj ;
Mann, Ishminder ;
Schaal, Thomas ;
Chan, Leo ;
Anandakrishnan, Sangeetha ;
Lin, Chun-wah ;
Espinoza, Patricio ;
Husain, Syed ;
Shapiro, Harris ;
Swaminathan, Karthikeyan ;
Wei, Sherry ;
Srinivasan, Maithreyan ;
Seshagiri, Somasekar ;
Modrusan, Zora .
BMC GENOMICS, 2017, 18
[8]   Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression [J].
Hafemeister, Christoph ;
Satija, Rahul .
GENOME BIOLOGY, 2019, 20 (01)
[9]   Reversible Oligonucleotide Chain Blocking Enables Bead Capture and Amplification of T-Cell Receptor α and β Chain mRNAs [J].
Hanson, W. Miachel ;
Chen, Zhe ;
Jackson, Laurie K. ;
Attaf, Meriem ;
Sewell, Andrew K. ;
Heemstra, Jennifer M. ;
Phillips, John D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (35) :11073-11076
[10]   Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis [J].
He, Helen ;
Suryawanshi, Hemant ;
Morozov, Pavel ;
Gay-Mimbrera, Jesus ;
Del Duca, Ester ;
Kim, Hyun Je ;
Kameyama, Naoya ;
Estrada, Yeriel ;
Der, Evan ;
Krueger, James G. ;
Ruano, Juan ;
Tuschl, Thomas ;
Guttman-Yassky, Emma .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2020, 145 (06) :1615-1628