Fixed points of univalent functions II

被引:0
作者
Schmieder, Gerald [1 ]
机构
[1] Univ Oldenburg, Inst Math, Fak 5, D-26111 Oldenburg, Germany
关键词
univalent functions; fixed points; cluster set;
D O I
10.1090/S0002-9939-06-08442-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a closed nowhere dense subset C of D a bounded univalent holomorphic function f on D is found such that C equals the cluster set of its fixed points.
引用
收藏
页码:3605 / 3611
页数:7
相关论文
共 8 条
[1]  
Collingwood E. F., 1966, THEORY CLUSTER SETS
[2]  
DOPPEL K, 1976, REND I MATEM U TRIES, V7, DOI UNSP MR046324 (57:3375)
[3]  
Gaier D., 1987, LECT COMPLEX APPROXI
[4]  
GHARIBYAN T, 2003, COMPUTATIONAL METHOD, V3, DOI UNSP MR2082019 (2005D:30049)
[5]  
Ohtsuka M., 1970, DIRICHLET PROBLEM EX
[6]  
Pommerenke C, 1975, UNIVALENT FUNCTIONS
[7]   FUSION LEMMA AND BOUNDARY STRUCTURE [J].
SCHMIEDER, G .
JOURNAL OF APPROXIMATION THEORY, 1992, 71 (03) :305-311
[8]   A LEMMA OF COMPLEX APPROXIMATION-THEORY [J].
SCHMIEDER, G ;
SHIBA, M .
MANUSCRIPTA MATHEMATICA, 1989, 65 (04) :447-464