Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions

被引:371
作者
Zheng, Zhaoke [1 ]
Huang, Baibiao [1 ]
Wang, Zeyan [1 ]
Guo, Meng [2 ]
Qin, Xiaoyan [1 ]
Zhang, Xiaoyang [1 ]
Wang, Peng [1 ]
Dai, Ying [2 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
VISIBLE-LIGHT IRRADIATION; SURFACE-STRUCTURE; CUO NANOCRYSTALS; TIO2; ANATASE; SIZE; ZNO; NANOPARTICLES; PERCENTAGE; REACTIVITY;
D O I
10.1021/jp904198d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu2O microcrystals with well-formed facets were synthesized by a simple hydrothermal method. The surface stabilities and photocatalytic properties of Cu2O microcrystals were systematically investigated. Cu2O {100} and {110} facets gradually disappear and transform into nanosheets during the photodegradation of methyl orange (MO) dye. With the increase of irradiation time, Cu2O microcrystals completely transform into nanosheels with {111} facets. The finally formed nanosheets exhibit stable photocatalytic activities. On the basis of both experimental analysis and theoretical calculations, a novel model of charge separation among crystal faces was proposed and the morphology transformation mechanism accompanied by MO bleaching was discussed. It is concluded that Cu2O exposing {111} facets can be used as a stable photocatalyst.
引用
收藏
页码:14448 / 14453
页数:6
相关论文
共 41 条
[1]   Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO.: Evidence for a reductive-oxidative interfacial mechanism [J].
Bandara, J ;
Guasaquillo, I ;
Bowen, P ;
Soare, L ;
Jardim, WF ;
Kiwi, J .
LANGMUIR, 2005, 21 (18) :8554-8559
[2]   Photocatalytic activity of CU2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J].
Bessekhouad, Y ;
Robert, D ;
Weber, JV .
CATALYSIS TODAY, 2005, 101 (3-4) :315-321
[3]   Evidence for structure sensitivity in the thermally activated and photocatalytic dehydrogenation of 2-propanol on TiO2 [J].
Brinkley, D ;
Engel, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (42) :9836-9841
[4]   A STUDY OF ELECTRODEPOSITED CUPROUS-OXIDE PHOTOVOLTAIC CELLS [J].
BRISKMAN, RN .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1992, 27 (04) :361-368
[5]   Control of CuO particle size on SiO2 by spin coating [J].
Brookshier, MA ;
Chusuei, CC ;
Goodman, DW .
LANGMUIR, 1999, 15 (06) :2043-2046
[6]   Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2.: XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts [J].
Espinós, JP ;
Morales, J ;
Barranco, A ;
Caballero, A ;
Holgado, JP ;
González-Elipe, AR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (27) :6921-6929
[7]   Reactivity of anatase TiO2 nanoparticles:: The role of the minority (001) surface [J].
Gong, XQ ;
Selloni, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (42) :19560-19562
[8]   Steps on anatase TiO2(101) [J].
Gong, Xue-Qing ;
Selloni, Annabella ;
Batzill, Matthias ;
Diebold, Ulrike .
NATURE MATERIALS, 2006, 5 (08) :665-670
[9]   Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties [J].
Han, Xiguang ;
Kuang, Qin ;
Jin, Mingshang ;
Xie, Zhaoxiong ;
Zheng, Lansun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (09) :3152-+
[10]   Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J].
Hara, M ;
Kondo, T ;
Komoda, M ;
Ikeda, S ;
Shinohara, K ;
Tanaka, A ;
Kondo, JN ;
Domen, K .
CHEMICAL COMMUNICATIONS, 1998, (03) :357-358