Uniqueness results for nonlocal Hamilton-Jacobi equations

被引:15
作者
Barles, Guy [2 ]
Cardaliaguet, Pierre [1 ]
Ley, Olivier [2 ]
Monteillet, Aurelien [1 ]
机构
[1] Univ Brest, Math Lab, CNRS, UMR 6205, F-29285 Brest, France
[2] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
关键词
Nonlocal Hamilton-Jacobi equations; Dislocation dynamics; Fitzhugh-Nagumo system; Nonlocal front propagation; Level-set approach; Geometrical properties; Lower-bound gradient estimate; Viscosity solutions; Eikonal equation; L-1-dependence in time; 2ND-ORDER PARABOLIC EQUATIONS; NEUMANN BOUNDARY-CONDITIONS; PHASE-FIELD-THEORY; VISCOSITY SOLUTIONS; DISLOCATION DYNAMICS; GLOBAL EXISTENCE; L-1; DEPENDENCE; TIME;
D O I
10.1016/j.jfa.2009.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in nonlocal eikonal equations describing the evolution of interfaces moving with a nonlocal, non-monotone velocity. For these equations, only the existence of global-in-time weak solutions is available in some particular cases. In this paper, we propose a new approach for proving uniqueness of the solution when the front is expanding. This approach simplifies and extends existing results for dislocation dynamics. It also provides the first uniqueness result for a Fitzhugh-Nagumo system. The key ingredients are some new perimeter estimates for the evolving fronts as well as some uniform interior cone property for these fronts. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1261 / 1287
页数:27
相关论文
共 21 条
[1]  
Alvarez O, 2005, INTERFACE FREE BOUND, V7, P415
[2]   Dislocation dynamics: Short-time existence and uniqueness of the solution [J].
Alvarez, Olivier ;
Hoch, Philippe ;
Le Bouar, Yann ;
Monneau, Regis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (03) :449-504
[3]   FRONT PROPAGATION AND PHASE FIELD-THEORY [J].
BARLES, G ;
SONER, HM ;
SOUGANIDIS, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :439-469
[4]  
Barles G., 1994, Mathematiques & Applications (Berlin) Mathematics & Applications, V17
[5]   Global existence results and uniqueness for dislocation equations [J].
Barles, Guy ;
Cardaliaguet, Pierre ;
Ley, Olivier ;
Monneau, Regis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :44-69
[6]   Nonlocal first-order Hamilton-Jacobi Equations modelling dislocations dynamics [J].
Barles, Guy ;
Ley, Olivier .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) :1191-1208
[7]   Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations [J].
Barles, Guy ;
Cardaliaguet, Pierre ;
Ley, Olivier ;
Monteillet, Aurelien .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2801-2810
[8]   Viscosity solutions of fully nonlinear second order parabolic equations with L1 dependence in time and Neumann boundary conditions [J].
Bourgoing, Mariane .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (03) :763-800
[9]   Viscosity solutions of fully nonlinear second order parabolic equations with L1 dependence in time and neumann boundary conditions.: Existence and applications to the level-set approach [J].
Bourgoing, Mariane .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (04) :1047-1069
[10]   MAXIMUM PRINCIPLE UNDER MINIMAL HYPOTHESES [J].
CLARKE, FH .
SIAM JOURNAL ON CONTROL, 1976, 14 (06) :1078-1091