INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF S-DOMINATED INTEGRATORS WITH APPLICATIONS (II)

被引:0
|
作者
Dragomir, S. S. [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci Appl Math, ZA-2050 Johannesburg, South Africa
关键词
Riemann-Stieltjes Integral; Functions of Bounded Variation; Cumulative Variation; Selfadjoint Operators; Unitary Operators; Trapezoid and Midpoint Inequalities; Cebysev and (CBS)-Type Functionals; OSTROWSKI TYPE INEQUALITIES; MAPPINGS; IMPROVEMENTS; COMPANION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that u, v : [a, b] -> IR are monotonic nondecreasing functions on the interval [a, b]. We say that the complex-valued function h : [a, b] C is S-dominated by the pair (u, v) if vertical bar h(y) - h (x)vertical bar(2) <= [u (y) - u(x)] [v(y) - v(x)] for any x, y is an element of [a, b]. In this paper we show among other that then vertical bar integral(b)(a) f(t) g(t) dh (t)vertical bar(2) <= integral(b)(a)vertical bar f(t)vertical bar(2) du(t) integral(b)(a)vertical bar g(t)vertical bar(2) dv(t), for any continuous functions f, g : [a, b] -> C. Applications for the trapezoidal inequality are given. New inequalities for some Cebysev and (CBS)-type functionals are presented. Natural applications for continuous functions of selfadjoint and unitary operators on Hilbert spaces are provided as well.
引用
收藏
页码:59 / 77
页数:19
相关论文
共 50 条
  • [31] RELATIVE CONVEXITY AND QUADRATURE RULES FOR THE RIEMANN-STIELTJES INTEGRAL
    Mercer, Peter R.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (01): : 65 - 68
  • [32] Bounding the Cebysev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications
    Cerone, P.
    Dragomir, S. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1247 - 1252
  • [33] THE QUASILINEARITY OF SOME FUNCTIONALS ASSOCIATED WITH THE RIEMANN-STIELTJES INTEGRAL
    Dragomir, S. S.
    Fedotov, I.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) : 53 - 66
  • [34] Approximating the Riemann-Stieltjes integral via a Chebyshev type functional
    Dragomir, S. S.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2014, 18 (02): : 239 - 259
  • [35] LOWER AND UPPER BOUNDS OF THE CEBYSEV FUNCTIONAL FOR THE RIEMANN-STIELTJES INTEGRAL
    Dragomir, S. S.
    Sofo, A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, (28): : 41 - 50
  • [36] Differences between means with bounds from a Riemann-Stieltjes integral
    Cerone, P
    Dragomir, SS
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (2-3) : 445 - 453
  • [37] Sharp error bounds in approximating the Riemann-Stieltjes integral by a generalised trapezoid formula and applications
    Pietro Cerone
    Sever S Dragomir
    Journal of Inequalities and Applications, 2013
  • [38] A Three-Point Quadrature Rule for the Riemann-Stieltjes Integral
    Alomari, M. W.
    Dragomir, S. S.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (01) : 1 - 14
  • [39] Approximating the Riemann-Stieltjes integral via some moments of the integrand
    Cerone, P.
    Dragomir, S. S.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (1-2) : 242 - 248
  • [40] MIDPOINT DERIVATIVE-BASED TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL
    Zhao, Weijing
    Zhang, Zhaoning
    Ye, Zhijian
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 369 - 376