Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel

被引:30
|
作者
Zardak, Sedigheh Gheisari [1 ]
Dehnavi, Mohsen Movahhedi [1 ]
Salehi, Amin [1 ]
Gholamhoseini, Majid [2 ]
机构
[1] Univ Yasuj, Agron & Plant Breeding Dept, Yasuj, Iran
[2] AREEO, Seed & Plant Improvement Inst, Karaj, Iran
来源
RHIZOSPHERE | 2018年 / 6卷
关键词
BATATAS L. LAM; WATER-STRESS; NUTRIENT-UPTAKE; RESPONSES; PLANTS; GENOTYPES; QUALITY; GROWTH; TOLERANCE; SYMBIOSIS;
D O I
10.1016/j.rhisph.2018.02.001
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This experiment was conducted to evaluate the physiological traits and essential oil yield of fennel affected by mycorrhizal fungal under different irrigation regimes. Field experiments were conducted at the Faculty of Agriculture, Yasouj University, Iran during the 2011 and 2012 years. The experiments were conducted using a randomized complete-block design with a split plot arrangement of treatments through four replications. The first factor included four irrigation regimes as main plot, and the second factor included three mycorrhizal fungus treatments as sub plot. The results indicated that irrespective of the mycorrhizal species and the drought stress intensity, inoculated fennels showed more essential oil yield, leaf and grain nutrient content and osmotic adjustment than did non-inoculated fennels. The positive effect of mycorrhizal symbiosis on leaf nutrient content and osmotic adjustment parameters was higher with high intensity of drought stress than with low intensity of drought stress. Results indicate that different AM fungi species even within the same genus have different effects on medicinal plant response to drought stress. The application of these microorganisms could be critical in the cultivation of medicinal plants under arid and semi-arid conditions, where water is the most important factor in determining plant growth and yield.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [31] Physiological and biochemical responses of arbuscular mycorrhizal fungi in symbiosis with Juglans nigra L. seedlings to alleviate salt stress
    Li, Ao
    Wu, Chengxu
    Zheng, Xu
    Nie, Ruining
    Tang, Jiali
    Ji, Xinying
    Zhang, Junpei
    RHIZOSPHERE, 2024, 31
  • [32] Exogenous proline improves osmoregulation, physiological functions, essential oil, and seed yield of fennel
    Zali, Ali Gholami
    Ehsanzadeh, Parviz
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 111 : 133 - 140
  • [33] Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm
    Alizadeh, Sevda
    Gharagoz, Syamak Fallahi
    Pourakbar, Latifeh
    Moghaddam, Sina Siavash
    Jamalomidi, Masoomeh
    RHIZOSPHERE, 2021, 19
  • [34] Effects of Arbuscular Mycorrhizal Fungi on Seedling Growth and Physiological Traits of Melilotus officinalis L. Grown Under Salinity Stress Conditions
    Akhzari, Davoud
    Mahdavi, Shahriar
    Pessarakli, Mohammad
    Ebrahimi, Mazaher
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (07) : 822 - 831
  • [35] Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought
    Fouad, Mohamed O.
    Essahibi, Abdellatif
    Benhiba, Laila
    Qaddoury, Ahmed
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2014, 12 (03) : 763 - 771
  • [36] Mycorrhizal symbiosis improved drought resistance in wheat using physiological traits
    Rani, Babita
    Jatttan, Minakshi
    Dhansu, Pooja
    Madan, Shashi
    Kumari, Nisha
    Sharma, Kamal Dutt
    Parshad, Jagdish
    Kumar, Ashwani
    CEREAL RESEARCH COMMUNICATIONS, 2023, 51 (01) : 115 - 124
  • [37] Arbuscular Mycorrhizal Fungi and Spermine Alleviate the Adverse Effects of Salinity Stress on Electrolyte Leakage and Productivity of Wheat Plants
    Ibrahim, A. H.
    Abdel-Fattah, G. M.
    Emam, F. M.
    Abd El-Aziz, M. H.
    Sbokr, A. E.
    PHYTON-ANNALES REI BOTANICAE, 2011, 51 (02) : 261 - 276
  • [38] Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress
    Xu, Hongwen
    Lu, Yan
    Tong, Shuyuan
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2018, 30 (03): : 199 - 204
  • [39] Arbuscular Mycorrhizal Fungi Enhance Tolerance to Drought Stress by Altering the Physiological and Biochemical Characteristics of Sugar Beet
    Cui, Zeyuan
    Chen, Rui
    Li, Tai
    Zou, Bingchen
    Geng, Gui
    Xu, Yao
    Stevanato, Piergiorgio
    Yu, Lihua
    Nurminsky, Vadim N.
    Liu, Jiahui
    Wang, Yuguang
    SUGAR TECH, 2024, 26 (05) : 1377 - 1392
  • [40] Combined Application of Arbuscular Mycorrhizal Fungi and Exogenous Melatonin Alleviates Drought Stress and Improves Plant Growth in Tobacco Seedlings
    Liu, Ling
    Li, Dong
    Ma, Yilin
    Shen, Hongtao
    Zhao, Shimin
    Wang, Yanfang
    JOURNAL OF PLANT GROWTH REGULATION, 2021, 40 (03) : 1074 - 1087