Bottom-up Metabolic Reconstruction of Arabidopsis and Its Application to Determining the Metabolic Costs of Enzyme Production

被引:106
作者
Arnold, Anne [1 ]
Nikoloski, Zoran [1 ]
机构
[1] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
关键词
AMINO-ACID; ESCHERICHIA-COLI; STARCH TURNOVER; PROTEIN; CARBON; NETWORK; GROWTH; ADJUSTMENT; EXPRESSION; BALANCE;
D O I
10.1104/pp.114.235358
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Large-scale modeling of plant metabolism provides the possibility to compare and contrast different cellular and environmental scenarios with the ultimate aim of identifying the components underlying the respective plant behavior. The existing models of Arabidopsis (Arabidopsis thaliana) are top-down assembled, whereby the starting point is the annotated genome, in particular, the metabolic genes. Hence, dead-end metabolites and blocked reactions can arise that are subsequently addressed by using gap-filling algorithms in combination with species-unspecific genes. Here, we present a bottom-up-assembled, large-scale model that relies solely on Arabidopsis-specific annotations and results in the inclusion of only manually curated reactions. While the existing models are largely condition unspecific by employing a single biomass reaction, we provide three biomass compositions that pertain to realistic and frequently examined scenarios: carbon-limiting, nitrogen-limiting, and optimal growth conditions. The comparative analysis indicates that the proposed Arabidopsis core model exhibits comparable efficiency in carbon utilization and flexibility to the existing network alternatives. Moreover, the model is utilized to quantify the energy demand of amino acid and enzyme de novo synthesis in photoautotrophic growth conditions. Illustrated by the case of the most abundant protein in the world, Rubisco, we determine its synthesis cost in terms of ATP requirements. This, in turn, allows us to explore the tradeoff between protein synthesis and growth in Arabidopsis. Altogether, the model provides a solid basis for completely species-specific integration of high-throughput data, such as gene expression levels, and for condition-specific investigations of in silico metabolic engineering strategies.
引用
收藏
页码:1380 / 1391
页数:12
相关论文
共 62 条
[1]   Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis [J].
Akashi, H ;
Gojobori, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3695-3700
[2]   Identification of protein stability determinants in chloroplasts [J].
Apel, Wiebke ;
Schulze, Waltraud X. ;
Bock, Ralph .
PLANT JOURNAL, 2010, 63 (04) :636-650
[3]   Update on activities at the Universal Protein Resource (UniProt) in 2013 [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Alpi, Emanuela ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dimmer, Emily ;
Fazzini, Francesco ;
Gane, Paul ;
Fedotov, Alexander ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Jones, Rachel ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightingale, Andrew ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D43-D47
[4]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[5]   Evolutionary Systems Biology of Amino Acid Biosynthetic Cost in Yeast [J].
Barton, Michael D. ;
Delneri, Daniela ;
Oliver, Stephen G. ;
Rattray, Magnus ;
Bergman, Casey M. .
PLOS ONE, 2010, 5 (08)
[6]   High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions [J].
Caldana, Camila ;
Degenkolbe, Thomas ;
Cuadros-Inostroza, Alvaro ;
Klie, Sebastian ;
Sulpice, Ronan ;
Leisse, Andrea ;
Steinhauser, Dirk ;
Fernie, Alisdair R. ;
Willmitzer, Lothar ;
Hannah, Matthew A. .
PLANT JOURNAL, 2011, 67 (05) :869-884
[7]   A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions [J].
Cheung, C. Y. Maurice ;
Williams, Thomas C. R. ;
Poolman, Mark G. ;
Fell, David. A. ;
Ratcliffe, R. George ;
Sweetlove, Lee J. .
PLANT JOURNAL, 2013, 75 (06) :1050-1061
[8]   Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli [J].
Craig, CL ;
Weber, RS .
MOLECULAR BIOLOGY AND EVOLUTION, 1998, 15 (06) :774-776
[9]   AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis [J].
Dal'Molin, Cristiana Gomes de Oliveira ;
Quek, Lake-Ee ;
Palfreyman, Robin William ;
Brumbley, Stevens Michael ;
Nielsen, Lars Keld .
PLANT PHYSIOLOGY, 2010, 152 (02) :579-589
[10]   Mutations in UDP-Glucose:Sterol Glucosyltransferase in Arabidopsis Cause Transparent Testa Phenotype and Suberization Defect in Seeds [J].
DeBolt, Seth ;
Scheible, Wolf-Ruediger ;
Schrick, Kathrin ;
Auer, Manfred ;
Beisson, Fred ;
Bischoff, Volker ;
Bouvier-Nave, Pierrette ;
Carroll, Andrew ;
Hematy, Kian ;
Li, Yonghua ;
Milne, Jennifer ;
Nair, Meera ;
Schaller, Hubert ;
Zemla, Marcin ;
Somerville, Chris .
PLANT PHYSIOLOGY, 2009, 151 (01) :78-87