A survey of federated learning for edge computing: Research problems and solutions

被引:120
作者
Xia, Qi [1 ]
Ye, Winson [1 ]
Tao, Zeyi [1 ]
Wu, Jindi [1 ]
Li, Qun [1 ]
机构
[1] Coll William & Mary, Dept Comp Sci, 251 Jamestown Rd, Williamsburg, VA 23185 USA
来源
HIGH-CONFIDENCE COMPUTING | 2021年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
Federated learning; Edge computing; PRIVACY; ATTACKS;
D O I
10.1016/j.hcc.2021.100008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning is a machine learning scheme in which a shared prediction model can be collaboratively learned by a number of distributed nodes using their locally stored data. It can provide better data privacy be-cause training data are not transmitted to a central server. Federated learning is well suited for edge computing applications and can leverage the the computation power of edge servers and the data collected on widely dis-persed edge devices. To build such an edge federated learning system, we need to tackle a number of technical challenges. In this survey, we provide a new perspective on the applications, development tools, communication efficiency, security & privacy, migration and scheduling in edge federated learning.
引用
收藏
页数:13
相关论文
共 145 条
  • [61] Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
    Kang, Jiawen
    Xiong, Zehui
    Niyato, Dusit
    Yu, Han
    Liang, Ying-Chang
    Kim, Dong In
    [J]. 2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019), 2019,
  • [62] Reliable Federated Learning for Mobile Networks
    Kang, Jiawen
    Xiong, Zehui
    Niyato, Dusit
    Zou, Yuze
    Zhang, Yang
    Guizani, Mohsen
    [J]. IEEE WIRELESS COMMUNICATIONS, 2020, 27 (02) : 72 - 80
  • [63] Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism
    Khan, Latif U.
    Pandey, Shashi Raj
    Tran, Nguyen H.
    Saad, Walid
    Han, Zhu
    Nguyen, Minh N. H.
    Hong, Choong Seon
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (10) : 88 - 93
  • [64] Edge computing: A survey
    Khan, Wazir Zada
    Ahmed, Ejaz
    Hakak, Saqib
    Yaqoob, Ibrar
    Ahmed, Arif
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 97 : 219 - 235
  • [65] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [66] THE BYZANTINE GENERALS PROBLEM
    LAMPORT, L
    SHOSTAK, R
    PEASE, M
    [J]. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 1982, 4 (03): : 382 - 401
  • [67] Lee NM, 2019, Arxiv, DOI [arXiv:1810.02340, 10.48550/arXiv.1810.02340, DOI 10.48550/ARXIV.1810.02340]
  • [68] Leng C, 2017, Arxiv, DOI arXiv:1707.09870
  • [69] Li FF, 2016, Arxiv, DOI arXiv:1605.04711
  • [70] Li H, 2017, Arxiv, DOI arXiv:1608.08710