Scalable Kernel-based Learning via Low-rank Approximation of Lifted Data

被引:0
|
作者
Sheikholeslami, Fatemeh [1 ]
Giannakis, Georgios B.
机构
[1] Univ Minnesota, Dept ECE, Minneapolis, MN 55455 USA
来源
2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2017年
关键词
DESCENT; CONVERGENCE; MATRIX;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite their well-documented capability in modeling nonlinear functions, kernel methods fall short in large-scale learning tasks due to their excess memory and computational requirements. The present work introduces a novel kernel approximation approach from a dimensionality reduction point of view on virtual lifted data. The proposed framework accommodates feature extraction while considering limited storage and computational availability, and subsequently provides kernel approximation by a linear inner-product over the extracted features. Probabilistic guarantees on the generalization of the proposed task is provided, and efficient solvers with provable convergence guarantees are developed. By introducing a sampling step which precedes the dimensionality reduction task, the framework is further broadened to accommodate learning over large datasets. The connection between the novel method and Nystrom kernel approximation algorithm with its modifications is also presented. Empirical tests validate the effectiveness of the proposed approach.
引用
收藏
页码:596 / 603
页数:8
相关论文
共 50 条
  • [21] Low-rank extragradient methods for scalable semidefinite optimization
    Garber, Dan
    Kaplan, Atara
    OPERATIONS RESEARCH LETTERS, 2025, 60
  • [22] Towards Scalable Kernel-Based Regularized System Identification
    Chen, Lujing
    Chen, Tianshi
    Detha, Utkarsh
    Andersen, Martin S.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1498 - 1504
  • [23] Low-Rank Representation for Incomplete Data
    Shi, Jiarong
    Yang, Wei
    Yong, Longquan
    Zheng, Xiuyun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [24] Joint Massive MIMO CSI Estimation and Feedback via Randomized Low-Rank Approximation
    Wei, Ziping
    Liu, Hongfu
    Li, Bin
    Zhao, Chenglin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (07) : 7979 - 7984
  • [25] Randomized Quaternion QLP Decomposition for Low-Rank Approximation
    Ren, Huan
    Ma, Ru-Ru
    Liu, Qiaohua
    Bai, Zheng-Jian
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [26] Low-rank approximation to entangled multipartite quantum systems
    Lin, Matthew M.
    Chu, Moody T.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [27] PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints
    Eswar, Srinivas
    Hayashi, Koby
    Ballard, Grey
    Kannan, Ramakrishnan
    Matheson, Michael A.
    Park, Haesun
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (03):
  • [28] FACTORIZATION APPROACH TO STRUCTURED LOW-RANK APPROXIMATION WITH APPLICATIONS
    Ishteva, Mariya
    Usevich, Konstantin
    Markovsky, Ivan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (03) : 1180 - 1204
  • [29] CP DECOMPOSITION AND LOW-RANK APPROXIMATION OF ANTISYMMETRIC TENSORS
    Kovac, Erna Begovic
    Perisa, Lana
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2024, 62 : 72 - 94
  • [30] Connectome Smoothing via Low-Rank Approximations
    Tang, Runze
    Ketcha, Michael
    Badea, Alexandra
    Calabrese, Evan D.
    Margulies, Daniel S.
    Vogelstein, Joshua T.
    Priebe, Carey E.
    Sussman, Daniel L.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (06) : 1446 - 1456