The Total Chromatic Number of Complete Multipartite Graphs with Low Deficiency

被引:4
作者
Dalal, Aseem [1 ]
Rodger, C. A. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi 110016, India
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
Total chromatic number; Type one; Complete multipartite graphs; COLORINGS;
D O I
10.1007/s00373-014-1503-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has long been conjectured that the total chromatic number. chi '' (K) of the complete p-partite graph K = K(r(1),..., r(p)) is Delta (K)+ 1 if and only if both K not equal K-r,K- r and | V(K)| = 0 (mod 2) implies that Sigma(v is an element of V)(K)( (K) -d(K) (v)) is at least the number of parts of odd size. It is known that. chi '' (K) <=Delta (K)+ 2. In this paper, a new approach is introduced to attack the conjecture that makes use of amalgamations of graphs. The power of this approach is demonstrated by settling the conjecture for all complete 5-partite graphs.
引用
收藏
页码:2159 / 2173
页数:15
相关论文
共 50 条
  • [41] The Determination of the Total Chromatic Number of Series-Parallel Graphs with (G) ≥ 4
    Shu-Dong Wang
    Shan-Chen Pang
    Graphs and Combinatorics, 2005, 21 : 531 - 540
  • [42] Hulls of codes from complete multipartite graphs
    Limbupasiriporn, Jirapha
    Limbupasiriporn, Prasit
    SCIENCEASIA, 2023, 49 : 50 - 58
  • [43] BINOMIAL EDGE IDEALS OF COMPLETE MULTIPARTITE GRAPHS
    Ohtani, Masahiro
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3858 - 3867
  • [44] Reciprocal distance energy of complete multipartite graphs
    Rakshith, B. R.
    Manjunatha, B. J.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [45] On uniquely list colorable complete multipartite graphs
    Shen, Yufa
    Wang, Yanning
    He, Wenjie
    Zhao, Yongqiang
    ARS COMBINATORIA, 2008, 88 : 367 - 377
  • [46] Strong geodetic problem on complete multipartite graphs
    Irsic, Vesna
    Konvalinka, Matjaz
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 481 - 491
  • [47] Complete multipartite graphs are determined by their distance spectra
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 448 : 285 - 291
  • [48] Spectral Inequalities on Independence Number, Chromatic Number, and Total Chromatic Number of a Graph
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (1-2) : 41 - 46
  • [49] Graphs that are Critical for the Packing Chromatic Number
    Bresar, Bostjan
    Ferme, Jasmina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (02) : 569 - 589
  • [50] Results on the Grundy chromatic number of graphs
    Zaker, Manouchehr
    DISCRETE MATHEMATICS, 2006, 306 (23) : 3166 - 3173