Physical interactions in macroporous scaffolds based on poly(ε-caprolactone)/chitosan semi-interpenetrating polymer networks

被引:30
作者
Garcia Cruz, Dunia M. [1 ]
Coutinho, Daniela F. [2 ,3 ]
Mano, Joao F. [2 ,3 ]
Gomez Ribelles, Jose Luis [1 ,4 ,5 ]
Salmeron Sanchez, Manuel [1 ,4 ,5 ]
机构
[1] Univ Politecn Valencia, Ctr Biomat & Tissue Engn, Valencia 46022, Spain
[2] Univ Minho, Dept Polymer Engn, Res Grp Biomat Biodegradables & Biomimet 3Bs, P-4710057 Braga, Portugal
[3] IBB, Braga, Portugal
[4] Ctr Invest Principe Felipe, Lab Biomat, Valencia 46013, Spain
[5] CIBER Bioingn Biomat & Nanomed, Valencia, Spain
关键词
Biodegradable scaffolds; Chitosan; Poly(epsilon-caprolactone); BIODEGRADABLE POLYMERS; THERMAL-DEGRADATION; POLYCAPROLACTONE; CHITOSAN; BLENDS; CAPROLACTONE;
D O I
10.1016/j.polymer.2009.02.046
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polycaprolactone (PCL) and chitosan (CHT) are immiscible polymers. However, biodegradable porous scaffolds of both polymers were obtained by combining different techniques based on the synthesis of semi-interpenetrating polymer networks (SemilPNs) and melt processing. SemilPNs were prepared through simultaneous precipitation of the polymer blend (PCL/CHT) and subsequent crosslinking of chitosan with tripolyphosphate (weight fractions of CHT up to 30 wt.%). High porosity PCL/CHT scaffolds with open pore structure and good interconnectivity were obtained. Mechanical properties, evaluated by dynamic-mechanical analysis, decrease as porosity increases. The physical interactions between functional groups of CHT and carbonyl groups of PCL were assessed by FTIR, the shifting of the main relaxation of PCL towards high temperatures as the fraction of CHT increases as well as the evolution of the thermal properties of the system. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2058 / 2064
页数:7
相关论文
共 21 条
[1]  
[Anonymous], ADV CHEM SERIES
[2]   PVA containing chito-oligosaccharide side chain [J].
Cho, YW ;
Han, SS ;
Ko, SW .
POLYMER, 2000, 41 (06) :2033-2039
[3]   THERMODYNAMICS OF FUSION OF POLY-BETA-PROPIOLACTONE AND POLY-EPSILON-CAPROLACTONE - COMPARATIVE ANALYSIS OF MELTING OF ALIPHATIC POLYLACTONE AND POLYESTER CHAINS [J].
CRESCENZI, V ;
MANZINI, G ;
CALZOLARI, G ;
BORRI, C .
EUROPEAN POLYMER JOURNAL, 1972, 8 (03) :449-+
[4]   Blending polysaccharides with biodegradable polymers.: I.: Properties of Chitosan/Polycaprolactone blends [J].
Cruz, Dunia M. Garcia ;
Ribelles, Jose L. Gomez ;
Sanchez, Manuel Salmeron .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2008, 85B (02) :303-313
[5]   Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications [J].
Escobar Ivirico, J. L. ;
Costa Martinez, E. ;
Salmeron Sanchez, M. ;
Munoz Criado, I. ;
Gomez Ribelles, J. L. ;
Monleon Pradas, M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2007, 83B (01) :266-275
[6]   Biodegradable polymers for the environment [J].
Gross, RA ;
Kalra, B .
SCIENCE, 2002, 297 (5582) :803-807
[7]   Porous scaffold design for tissue engineering [J].
Hollister, SJ .
NATURE MATERIALS, 2005, 4 (07) :518-524
[8]   Thermal properties and crystallization behaviour of blends of poly(ε-caprolactone) with chitin and chitosan [J].
Honma, T ;
Senda, T ;
Inoue, Y .
POLYMER INTERNATIONAL, 2003, 52 (12) :1839-1846
[9]   Polymer-layered silicate nanocomposites based on poly(ε-caprolactone) [J].
Kiersnowski, A ;
Piglowski, J .
EUROPEAN POLYMER JOURNAL, 2004, 40 (06) :1199-1207
[10]   How useful is SBF in predicting in vivo bone bioactivity? [J].
Kokubo, T ;
Takadama, H .
BIOMATERIALS, 2006, 27 (15) :2907-2915