Particle Conformation Regulates Antibody Access to a Conserved GII.4 Norovirus Blockade Epitope

被引:47
作者
Lindesmith, Lisa C. [1 ]
Donaldson, Eric F. [1 ]
Beltramello, Martina [2 ]
Pintus, Stefania [2 ]
Corti, Davide [2 ,3 ]
Swanstrom, Jesica [1 ]
Debbink, Kari [1 ]
Jones, Taylor A. [1 ]
Lanzavecchia, Antonio [2 ,4 ]
Baric, Ralph S. [1 ]
机构
[1] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27514 USA
[2] Inst Res Biomed, Bellinzona, Switzerland
[3] Humabs BioMed SA, Bellinzona, Switzerland
[4] Swiss Fed Inst Technol, Inst Microbiol, Zurich, Switzerland
基金
美国国家卫生研究院;
关键词
VIRUS-LIKE PARTICLES; UNITED-STATES; MONOCLONAL-ANTIBODIES; GENETIC-ANALYSIS; STRUCTURAL BASIS; P2; DOMAIN; OUTBREAKS; STRAIN; GASTROENTERITIS; EPIDEMIOLOGY;
D O I
10.1128/JVI.01192-14
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
GII.4 noroviruses (NoVs) are the primary cause of epidemic viral acute gastroenteritis. One primary obstacle to successful NoV vaccination is the extensive degree of antigenic diversity among strains. The major capsid protein of GII.4 strains is evolving rapidly, resulting in the emergence of new strains with altered blockade epitopes. In addition to characterizing these evolving blockade epitopes, we have identified monoclonal antibodies (MAbs) that recognize a blockade epitope conserved across time-ordered GII.4 strains. Uniquely, the blockade potencies of MAbs that recognize the conserved GII.4 blockade epitope were temperature sensitive, suggesting that particle conformation may regulate functional access to conserved blockade non-surface-exposed epitopes. To map conformation-regulating motifs, we used bioinformatics tools to predict conserved motifs within the protruding domain of the capsid and designed mutant VLPs to test the impacts of substitutions in these motifs on antibody cross-GII.4 blockade. Charge substitutions at residues 310, 316, 484, and 493 impacted the blockade potential of cross-GII.4 blockade MAbs with minimal impact on the blockade of MAbs targeting other, separately evolving blockade epitopes. Specifically, residue 310 modulated antibody blockade temperature sensitivity in the tested strains. These data suggest access to the conserved GII.4 blockade antibody epitope is regulated by particle conformation, temperature, and amino acid residues positioned outside the antibody binding site. The regulating motif is under limited selective pressure by the host immune response and may provide a robust target for broadly reactive NoV therapeutics and protective vaccines.
引用
收藏
页码:8826 / 8842
页数:17
相关论文
共 50 条
  • [31] Molecular Evolution and Epidemiology of Norovirus GII.4 Viruses in the United States
    Barclay, Leslie
    Montmayeur, Anna M.
    Cannon, Jennifer L.
    Mallory, Michael L.
    Reyes, Yaoska, I
    Wall, Helen
    Baric, Ralph S.
    Lindesmith, Lisa C.
    Vinje, Jan
    Chhabra, Preeti
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2025,
  • [32] Identification of a blockade epitope of human norovirus GII.17
    Yi, Yufang
    Wang, Xiaoli
    Wang, Shuxia
    Xiong, Pei
    Liu, Qingwei
    Zhang, Chao
    Yin, Feifei
    Huang, Zhong
    [J]. EMERGING MICROBES & INFECTIONS, 2021, 10 (01) : 954 - 963
  • [33] Development of a sensitive method for directly sequencing GII.4 norovirus genome
    Xue, Liang
    Cai, Weicheng
    Wu, Qingping
    Kou, Xiaoxia
    Zhang, Jumei
    Guo, Weipeng
    [J]. DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2016, 84 (03) : 200 - 202
  • [34] Emerging GII.4 Norovirus Variants Affect Children With Diarrhea in Palermo, Italy in 2006
    Ramirez, Stefania
    Giammanco, Giovanni M.
    De Grazia, Simona
    Colomba, Claudia
    Martella, Vito
    Arista, Serenella
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2009, 81 (01) : 139 - 145
  • [35] Mucosal Antibodies Induced by Intranasal but Not Intramuscular Immunization Block Norovirus GII.4 Virus-Like Particle Receptor Binding
    Tamminen, Kirsi
    Malm, Maria
    Vesikari, Timo
    Blazevic, Vesna
    [J]. VIRAL IMMUNOLOGY, 2016, 29 (05) : 315 - 319
  • [36] Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974-2015
    Motoya, Takumi
    Nagasawa, Koo
    Matsushima, Yuki
    Nagata, Noriko
    Ryo, Akihide
    Sekizuka, Tsuyoshi
    Yamashita, Akifumi
    Kuroda, Makoto
    Morita, Yukio
    Suzuki, Yoshiyuki
    Sasaki, Nobuya
    Katayama, Kazuhiko
    Kimura, Hirokazu
    [J]. FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [37] Immunogenicity and Blocking Efficacy of Norovirus GII.4 Recombinant P Protein Vaccine
    Yu, Zhendi
    Shao, Qingyi
    Xu, Zhangkai
    Chen, Chenghao
    Li, Mingfan
    Jiang, Yi
    Cheng, Dongqing
    [J]. VACCINES, 2023, 11 (06)
  • [38] Complete genome analysis of a novel norovirus GII.4 variant identified in China
    Xue, Liang
    Wu, Qingping
    Kou, Xiaoxia
    Cai, Weicheng
    Zhang, Jumei
    Guo, Weipeng
    [J]. VIRUS GENES, 2013, 47 (02) : 228 - 234
  • [39] Effects and Clinical Significance of GII.4 Sydney Norovirus, United States, 2012-2013
    Leshem, Eyal
    Wikswo, Mary
    Barclay, Leslie
    Brandt, Eric
    Storm, William
    Salehi, Ellen
    DeSalvo, Traci
    Davis, Tim
    Saupe, Amy
    Dobbins, Ginette
    Booth, Hillary A.
    Biggs, Christianne
    Garman, Katie
    Woron, Amy M.
    Parashar, Umesh D.
    Vinje, Jan
    Hall, Aron J.
    [J]. EMERGING INFECTIOUS DISEASES, 2013, 19 (08) : 1231 - 1238
  • [40] Human norovirus GII.4 Hong Kong variant shares common ancestry with GII.4 Osaka and emerged in Thailand in 2016
    Chuchaona, Watchaporn
    Chansaenroj, Jira
    Puenpa, Jiratchaya
    Khongwichit, Sarawut
    Korkong, Sumeth
    Vongpunsawad, Sompong
    Poovorawan, Yong
    [J]. PLOS ONE, 2021, 16 (08):