Accelerating NADH oxidation and hydrogen production with mid-gap states of nitrogen-rich carbon nitride photocatalyst

被引:17
作者
Bhoyar, Toshali [1 ]
Kim, Dong Jin [2 ]
Abraham, B. Moses [3 ]
Gupta, Akanksha [4 ]
Maile, Nagesh [5 ]
Manwar, Nilesh R. [6 ]
Tonda, Surendar [5 ]
Vidyasagar, Devthade [7 ]
Umare, Suresh S. [1 ]
机构
[1] Visvesvaraya Natl Inst Technol VNIT, Mat & Catalysis Lab, Nagpur 440010, India
[2] Kyungpook Natl Univ, Sch Energy Engn, Daegu 41566, South Korea
[3] Indian Inst Technol Kanpur, Dept Chem Engn, Kanpur 208016, India
[4] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[5] Kyungpook Natl Univ, Dept Environm Engn, Daegu 41566, South Korea
[6] Inst Chem Technol, Dept Chem, Mumbai 400019, India
[7] Kyungpook Natl Univ, Sch Mat Sci & Engn, Daegu 41566, South Korea
关键词
ENERGY-CONVERSION; G-C3N4; WATER;
D O I
10.1016/j.isci.2022.105567
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regeneration of electron carriers such as NAD(+)/NADH is highly desirable and essential for enzymatic conversions. Here, we demonstrate a sustainable strategy for the regeneration of NAD(+) as an electron carrier via photon-assisted heterogeneous catalysis. For this, a mid-gap state induced nitrogen-rich polymeric carbon nitride (NPCN) catalyst was synthesized by an additive-assisted thermal copolymerization. Utilizing NPCN as a photocatalyst presented NADH photooxidation efficiency of over 98% and a high hydrogen production rate of 11.18 mmolg(-1)h(-1) with an apparent quantum yield of 9.16% (lambda = 420 nm), outperforming other state-of-art metal-free photocatalysts. The experimental and theoretical simulations suggest that mid-gap states in NPCN catalyst are main platform for charge-carrier separation that enhances the overall photocatalytic performance.
引用
收藏
页数:19
相关论文
共 53 条
[1]   Self-Supporting 3D Carbon Nitride with Tunable n → π* Electronic Transition for Enhanced Solar Hydrogen Production [J].
An, Sufeng ;
Zhang, Guanghui ;
Li, Keyan ;
Huang, Zhennan ;
Wang, Xiang ;
Guo, Yongkang ;
Hou, Jungang ;
Song, Chunshan ;
Guo, Xinwen .
ADVANCED MATERIALS, 2021, 33 (49)
[2]   Tailoring photoactivity of polymeric carbon nitride via donor-p-acceptor network [J].
Bhoyar, Toshali ;
Kim, Dong Jin ;
Abraham, B. Moses ;
Tonda, Surendar ;
Manwar, Nilesh R. ;
Vidyasagar, Devthade ;
Umare, Suresh S. .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 310
[3]   Mitigating phytotoxicity of tetracycline by metal-free 8-hydroxyquinoline functionalized carbon nitride photocatalyst [J].
Bhoyar, Toshali ;
Vidyasagar, Devthade ;
Umare, Suresh S. .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 125 :37-46
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Conjugated Polymer Hydrogel Photocatalysts with Expandable Photoactive Sites in Water [J].
Byun, Jeehye ;
Landfester, Katharina ;
Zhang, Kai A. I. .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3381-3387
[6]   Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation [J].
Dong, Fan ;
Li, Yuhan ;
Wang, Zhenyu ;
Ho, Wing-Kei .
APPLIED SURFACE SCIENCE, 2015, 358 :393-403
[7]   EPR investigations of polymeric and H2O2-modified C3N4-based photocatalysts [J].
Dvoranova, Dana ;
Barbierikova, Zuzana ;
Mazur, Milan ;
Garcia-Lopez, Elisa I. ;
Marci, Giuseppe ;
Luspai, Karol ;
Brezova, Vlasta .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 375 :100-113
[8]   Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction [J].
Fina, Federica ;
Callear, Samantha K. ;
Carins, George M. ;
Irvine, John T. S. .
CHEMISTRY OF MATERIALS, 2015, 27 (07) :2612-2618
[9]   Bioelectrocatalytic oxidation of glucose with antibiotic channel-containing liposomes [J].
Fujita, Shuji ;
Matsumoto, Ryuhei ;
Ogawa, Kenichi ;
Sakai, Hideki ;
Maesaka, Akihiro ;
Tokita, Yuichi ;
Tsujimura, Seiya ;
Shirai, Osamu ;
Kano, Kenji .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2650-2653
[10]   Incorporating p-Phenylene as an Electron-Donating Group into Graphitic Carbon Nitride for Efficient Charge Separation [J].
Gao, Honglin ;
Guo, Yong ;
Yu, Zhiwu ;
Zhao, Meiming ;
Hou, Yang ;
Zhu, Zhongqi ;
Yan, Shicheng ;
Liu, Qingju ;
Zou, Zhigang .
CHEMSUSCHEM, 2019, 12 (18) :4285-4292