Selection of PolSAR Observables for Crop Biophysical Variable Estimation With Global Sensitivity Analysis

被引:17
作者
Erten, Esra [1 ,2 ]
Taskin, Gulsen [3 ]
Lopez-Sanchez, Juan M. [4 ]
机构
[1] Open Univ, Fac Sci Technol Engn & Math, Milton Keynes MK7 6AA, Bucks, England
[2] Istanbul Tech Univ, Dept Geomat Engn, TR-34469 Istanbul, Turkey
[3] Istanbul Tech Univ, Inst Earthquake Engn & Disaster Management, TR-34469 Istanbul, Turkey
[4] Univ Alicante, Inst Comp Res, E-03080 Alicante, Spain
关键词
Agriculture; global sensitivity analysis (GSA); polarimetry; Radarsat-2; synthetic aperture radar;
D O I
10.1109/LGRS.2019.2891953
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The role of global sensitivity analysis (GSA) is to quantify and rank the most influential features for biophysical variable estimation. In this letter, an approximation model, called high-dimensional model representation (HDMR), is utilized to develop a regression method in conjunction with a GSA in the context of determining key input drivers in the estimation of crop biophysical variables from polarimetric synthetic aperture radar data. A multitemporal Radarsat-2 data set is used for the retrieval of three biophysical variables of barley: leaf area index, normalized difference vegetation index, and Biologische Bundesanstalt, Bundessortenamt and CHemische Industrie stage. The HDMR technique is first adopted to estimate a regression model with all available polarimetric features for each biophysical parameter, and sensitivity indices of each feature are then derived to explain the original space with a smaller number of features in which a final regression model is established. To evaluate the applicability of this methodology, root-mean square and coefficient of determination were performed under different amounts of samples. Results highlight that HDMR can be used effectively in biophysical variable estimation for not only reducing computational cost but also for providing a robust regression.
引用
收藏
页码:766 / 770
页数:5
相关论文
共 18 条
[1]   Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation [J].
Blix, Katalin ;
Camps-Valls, Gustau ;
Jenssen, Robert .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) :1265-1277
[2]   Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data [J].
Canisius, Francis ;
Shang, Jiali ;
Liu, Jiangui ;
Huang, Xiaodong ;
Ma, Baoluo ;
Jiao, Xianfeng ;
Geng, Xiaoyuan ;
Kovacs, John M. ;
Walters, Dan .
REMOTE SENSING OF ENVIRONMENT, 2018, 210 :508-518
[3]  
Caves R., 2011, TECH REP
[4]   Paddy-Rice Phenology Classification Based on Machine-Learning Methods Using Multitemporal Co-Polar X-Band SAR Images [J].
Kucuk, Caglar ;
Taskin, Gulsen ;
Erten, Esra .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) :2509-2519
[5]   Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling [J].
Lambert, Romain S. C. ;
Lemke, Frank ;
Kucherenko, Sergei S. ;
Song, Shufang ;
Shah, Nilay .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 128 :42-54
[6]   Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions [J].
Li, GY ;
Hu, JS ;
Wang, SW ;
Georgopoulos, PG ;
Schoendorf, J ;
Rabitz, H .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (07) :2474-2485
[7]   A Comprehensive Evaluation of Microwave Emissivity and Brightness Temperature Sensitivities to Soil Parameters Using Qualitative and Quantitative Sensitivity Analyses [J].
Ma, Chunfeng ;
Li, Xin ;
Wang, Jing ;
Wang, Chen ;
Duan, Qingyun ;
Wang, Weizhen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02) :1025-1038
[8]   Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth Engine [J].
Mandal, Dipankar ;
Kumare, Vineet ;
Bhattacharya, Avik ;
Rao, Yalamanchili Subrahmanyeswara ;
Siqueira, Paul ;
Bera, Soumen .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) :1947-1951
[9]   Variance-based sensitivity indices for models with dependent inputs [J].
Mara, Thierry A. ;
Tarantola, Stefano .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 107 :115-121
[10]  
Saltelli A., 2008, Global sensitivity analysis: the primer, P1, DOI DOI 10.1002/9780470725184