Higher genus hyperelliptic reductions of the Benney equations

被引:14
作者
Baldwin, S [1 ]
Gibbons, J [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, London SW7 2BZ, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 20期
关键词
D O I
10.1088/0305-4470/37/20/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It was shown by Gibbons and Tsarev (1996 Phys. Lett. A 211 19; 1999 Phys. Lett. A 258 263) that n-parameter reductions of the Benney equations correspond to n-parameter families of conformal maps. Here, we consider a specific set of these, the hyperelliptic reductions. The mapping function for this is calculated explicitly by inverting a second kind Abelian integral on the stratum Theta(1) of the Jacobi variety of a genus g (g greater than or equal to 3) hyperelliptic curve. This is done using a method based on the result of Jorgenson (1992 Isr. J. Math. 77273).
引用
收藏
页码:5341 / 5354
页数:14
相关论文
共 16 条
[1]   Hyperelliptic reduction of the Benney moment equations [J].
Baldwin, S ;
Gibbons, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (31) :8393-8417
[2]  
BELOKOLOS ED, 1994, ALGEBRAO GEOMETRICAL
[3]  
BENNEY DJ, 1973, STUD APPL MATH, V52, P45
[4]  
Buchstaber V., 1997, REV MATH MATH PHYS, V10, P1
[5]  
ENOLSKI V, UNPUB
[6]  
ENOLSKI VZ, UNPUB ADDITION THEOR
[7]   Reductions of the Benney equations [J].
Gibbons, J ;
Tsarev, SP .
PHYSICS LETTERS A, 1996, 211 (01) :19-24
[8]   COLLISIONLESS BOLTZMANN EQUATIONS AND INTEGRABLE MOMENT EQUATIONS [J].
GIBBONS, J .
PHYSICA D, 1981, 3 (03) :503-511
[9]   Conformal maps and reductions of the Benney equations [J].
Gibbons, J ;
Tsarev, SP .
PHYSICS LETTERS A, 1999, 258 (4-6) :263-271
[10]  
GRANT D, 1991, P LOND MATH SOC, V62, P121