On new invariant solutions of generalized Fokker-Planck equation

被引:0
|
作者
Yao, RX [1 ]
Li, ZB
机构
[1] E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
[2] Weinan Teachers Coll, Dept Comp Sci, Weinan 714000, Peoples R China
[3] NW Univ Xian, Ctr Nonlinear Sci, Xian 710069, Peoples R China
关键词
Fokker-Planck equation; potential symmetry; invariant solutions; symbolic computation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported.
引用
收藏
页码:665 / 668
页数:4
相关论文
共 50 条
  • [1] On New Invariant Solutions of Generalized Fokker-Planck Equation
    YAO Ruo-Xia~(1
    CommunicationsinTheoreticalPhysics, 2004, 41 (05) : 665 - 668
  • [2] Generalized canonical formalism for the Fokker-Planck equation with scale-invariant solutions
    Abe, Sumiyoshi
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 139 - 143
  • [3] Generalized Fokker-Planck equation: Derivation and exact solutions
    Denisov, S. I.
    Horsthemke, W.
    Haenggi, P.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04): : 567 - 575
  • [4] Generalized Fokker-Planck equation: Derivation and exact solutions
    S. I. Denisov
    W. Horsthemke
    P. Hänggi
    The European Physical Journal B, 2009, 68 : 567 - 575
  • [5] Potential symmetries and invariant solutions for the generalized one-dimensional Fokker-Planck equation
    Khater, AH
    Moussa, MHM
    Abdul-Aziz, SF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 304 (3-4) : 395 - 408
  • [6] Exact solutions for a generalized nonlinear fractional Fokker-Planck equation
    Ma, Junhai
    Liu, Yanqin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 515 - 521
  • [7] INVARIANT MEASURES FOR A STOCHASTIC FOKKER-PLANCK EQUATION
    De Moor, Sylvain
    Rodrigues, Luis Miguel
    Vovelle, Julien
    KINETIC AND RELATED MODELS, 2018, 11 (02) : 357 - 395
  • [8] EXPLICIT SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 223 - 230
  • [9] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170
  • [10] Generalized Fokker-Planck equation with generalized interval probability
    Wang, Yan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 37 (1-2) : 92 - 104