LINEAR BOUND IN TERMS OF MAXMAXFLOW FOR THE CHROMATIC ROOTS OF SERIES-PARALLEL GRAPHS

被引:8
作者
Royle, Gordon F. [1 ]
Sokal, Alan D. [2 ,3 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Nedlands, WA 6009, Australia
[2] NYU, Dept Phys, New York, NY 10003 USA
[3] UCL, Dept Math, London WC1E 6BT, England
关键词
chromatic polynomial; multivariate Tutte polynomial; antiferromagnetic Potts model; chromatic roots; maxmaxflow; series-parallel graph; MODEL PARTITION-FUNCTIONS; NONCOMPACT W BOUNDARIES; GROUND-STATE DEGENERACY; RELIABILITY POLYNOMIALS; POTTS ANTIFERROMAGNETS; COMPLEX ZEROS; ALGORITHMS; SUBGRAPHS; REGIONS;
D O I
10.1137/130930133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the (real or complex) chromatic roots of a series-parallel graph with maxmaxflow Lambda lie in the disc vertical bar q - 1 vertical bar < (Lambda - 1)/log 2. More generally, the same bound holds for the (real or complex) roots of the multivariate Tutte polynomial when the edge weights lie in the "real antiferromagnetic regime" -1 <= v(e) <= 0. For each Lambda >= 3, we exhibit a family of graphs, namely, the "leaf-joined trees", with maxmaxflow. and chromatic roots accumulating densely on the circle vertical bar q - 1 vertical bar = Lambda - 1, thereby showing that our result is within a factor 1/log 2 approximate to 1.442695 of being sharp.
引用
收藏
页码:2117 / 2159
页数:43
相关论文
共 36 条
[1]  
[Anonymous], 1991, GRAPH THEORY COMBINA
[2]   LINEAR-TIME COMPUTATION OF OPTIMAL SUBGRAPHS OF DECOMPOSABLE GRAPHS [J].
BERN, MW ;
LAWLER, EL ;
WONG, AL .
JOURNAL OF ALGORITHMS, 1987, 8 (02) :216-235
[3]  
Biggs N., 1972, J. Comb. Theory B, V12, P123, DOI [10.1016/0095-8956, DOI 10.1016/0095-8956, 10.1016/0095-8956(72)90016-0, DOI 10.1016/0095-8956(72)90016-0]
[4]   CHROMATIC POLYNOMIALS [J].
BIRKHOFF, GD ;
LEWIS, DC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 60 (NOV) :355-451
[5]   Parallel algorithms for series parallel graphs and graphs with treewidth two [J].
Bodlaender, HL ;
van Antwerpen-de Fluiter, B .
ALGORITHMICA, 2001, 29 (04) :534-559
[6]   Absence of zeros for the chromatic polynomial on bounded degree graphs [J].
Borgs, C .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2) :63-74
[7]   AUTOMATIC-GENERATION OF LINEAR-TIME ALGORITHMS FROM PREDICATE CALCULUS DESCRIPTIONS OF PROBLEMS ON RECURSIVELY CONSTRUCTED GRAPH FAMILIES [J].
BORIE, RB ;
PARKER, RG ;
TOVEY, CA .
ALGORITHMICA, 1992, 7 (5-6) :555-581
[8]  
Brawley JV, 2001, FINITE FIELDS AND APPLICATIONS, P43
[9]   LOCATION OF ZEROS OF CHROMATIC AND RELATED POLYNOMIALS OF GRAPHS [J].
BRENTI, F ;
ROYLE, GF ;
WAGNER, DG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (01) :55-80
[10]  
Colbourn Charles J, 1987, The combinatorics of network reliability