Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition

被引:15
|
作者
Tian, Yi [1 ]
Kong, Yu [2 ]
Ruan, Qiuqi [1 ]
An, Gaoyun [1 ]
Fu, Yun [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Action Recognition; locally consistent group sparse coding; hierarchical sparse coding scheme; absolute and relative location models; IMAGE CLASSIFICATION; MOTION; FEATURES; VECTOR; ROBUST;
D O I
10.1109/TIP.2017.2788196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel two-layer video representation for human action recognition employing hierarchical group sparse encoding technique and spatio-temporal structure. In the first layer, a new sparse encoding method named locally consistent group sparse coding (LCGSC) is proposed to make full use of motion and appearance information of local features. LCGSC method not only encodes global layouts of features within the same video-level groups, but also captures local correlations between them, which obtains expressive sparse representations of video sequences. Meanwhile, two kinds of efficient location estimation models, namely an absolute location model and a relative location model, are developed to incorporate spatio-temporal structure into LCGSC representations. In the second layer, action-level group is established, where a hierarchical LCGSC encoding scheme is applied to describe videos at different levels of abstractions. On the one hand, the new layer captures higher order dependency between video sequences; on the other hand, it takes label information into consideration to improve discrimination of videos' representations. The superiorities of our hierarchical framework are demonstrated on several challenging datasets.
引用
收藏
页码:1748 / 1762
页数:15
相关论文
共 50 条
  • [1] SPATIO-TEMPORAL PYRAMIDAL ACCORDION REPRESENTATION FOR HUMAN ACTION RECOGNITION
    Sekma, Manel
    Mejdoub, Mahmoud
    Ben Amar, Chokri
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [2] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Wu, Qianhan
    Huang, Qian
    Li, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16409 - 16430
  • [3] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Qianhan Wu
    Qian Huang
    Xing Li
    Multimedia Tools and Applications, 2023, 82 : 16409 - 16430
  • [4] Hierarchical Spatio-Temporal Representation Learning for Gait Recognition
    Wang, Lei
    Liu, Bo
    Liang, Fangfang
    Wang, Bincheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19582 - 19592
  • [5] Hierarchical Spatio-Temporal Context Modeling for Action Recognition
    Sun, Ju
    Wu, Xiao
    Yan, Shuicheng
    Cheong, Loong-Fah
    Chua, Tat-Seng
    Li, Jintao
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2004 - +
  • [6] Sparse Spatio-Temporal Representation of Joint Shape-Motion Cues for Human Action Recognition in Depth Sequences
    Tran, Quang D.
    Ly, Ngoc Q.
    PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 253 - 258
  • [7] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [8] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    EURASIP Journal on Image and Video Processing, 2016
  • [9] A Hierarchical Spatio-Temporal Model for Human Activity Recognition
    Xu, Wanru
    Miao, Zhenjiang
    Zhang, Xiao-Ping
    Tian, Yi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (07) : 1494 - 1509
  • [10] Spatio-temporal feature extraction and representation for RGB-D human action recognition
    Luo, Jiajia
    Wang, Wei
    Qi, Hairong
    PATTERN RECOGNITION LETTERS, 2014, 50 : 139 - 148