Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals

被引:30
作者
Grenz, Sebastian [1 ]
Baumann, Philipp T. [1 ]
Rueckert, Christian [2 ]
Nebel, Bernd A. [3 ]
Siebert, Daniel [4 ,5 ]
Schwentner, Andreas [4 ]
Eikmanns, Bernhard J. [4 ]
Hauer, Bernhard [3 ]
Kalinowski, Joern [2 ]
Takors, Ralf [1 ]
Blombach, Bastian [1 ,5 ]
机构
[1] Univ Stuttgart, Inst Biochem Engn, Allmandring 31, D-70569 Stuttgart, Germany
[2] Bielefeld Univ, Ctr Biotechnol, Univ Str 27, D-33615 Bielefeld, Germany
[3] Univ Stuttgart, Dept Tech Biochem, Allmandring 31, D-70569 Stuttgart, Germany
[4] Univ Ulm, Inst Microbiol & Biotechnol, D-89069 Ulm, Germany
[5] Tech Univ Munich, Microbial Biotechnol, Campus Straubing Biotechnol & Sustainabil, Straubing, Germany
关键词
Hydrogenophaga pseudoflava; Syngas; Bisabolene; Carbon dioxide; Carbon monoxide; Hydrogen; COMPLETE NUCLEOTIDE-SEQUENCE; RALSTONIA-EUTROPHA H16; CARBON-MONOXIDE; ESCHERICHIA-COLI; CORYNEBACTERIUM-GLUTAMICUM; ALCALIGENES-EUTROPHUS; BIOMASS SYNGAS; CLONING; GENES; TRANSFORMATION;
D O I
10.1016/j.ymben.2019.07.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gasification is a suitable technology to generate energy-rich synthesis gas (syngas) from biomass or waste streams, which can be utilized in bacterial fermentation processes for the production of chemicals and fuels. Established microbial processes currently rely on acetogenic bacteria which perform an energetically inefficient anaerobic CO oxidation and acetogenesis potentially hampering the biosynthesis of complex and ATP-intensive products. Since aerobic oxidation of CO is energetically more favorable, we exploit in this study the Gram-negative beta-proteobacterium Hydrogenophaga pseudoflava DSM1084 as novel host for the production of chemicals from syngas. We sequenced and annotated the genome of H. pseudoflava and established a genetic engineering toolbox, which allows markerless chromosomal modification via the pk19mobsacB system and heterologous gene expression on pBBRMCS2-based plasmids. The toolbox was extended by identifying strong endogenous promotors such as P-gapA2 which proved to yield high expression under heterotrophic and autotrophic conditions. H. pseudoflava showed relatively fast heterotrophic growth in complex and minimal medium with sugars and organic acids which allows convenient handling in lab routines. In autotrophic bioreactor cultivations with syngas, H. pseudoflava exhibited a growth rate of 0.06 h(-1) and biomass specific uptakes rates of 14.2 +/- 0.3 mmol H(2)g(CDW)(-1) h(-1), 73.9 +/- 1.8 mmol CO g(CDW)(-1) h(-1), and 31.4 +/- 0.3 mmol O-2 g(CDW)(-1) h(-1). As proof of concept, we engineered the carboxydotrophic bacterium for the aerobic production of the C-15 sesquiterpene (E)-alpha-bisabolene from the C-1 carbon source syngas by heterologous expression of the (E)-alpha-bisabolene synthase gene agBIS. The resulting strain H. pseudoflava (pOCEx1:agBIS) produced 59 +/- 8 mu g (E)-alpha-bisabolene L-1 with a volumetric productivity Q(p) of 1.2 +/- 0.2 mu g L-1 h(-1) and a biomass-specific productivity q(p) of 13.1 +/- 0.6 mu g g(CDW)(-1) h(-1). The intrinsic properties and the genetic repertoire of H. pseudoflava make this carboxydotrophic bacterium a promising candidate for future aerobic production processes to synthesize more complex or ATP-intensive chemicals from syngas.
引用
收藏
页码:220 / 230
页数:11
相关论文
共 68 条
[51]   Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production [J].
Oezaydin, Bilge ;
Burd, Helcio ;
Lee, Taek Soon ;
Keasling, Jay D. .
METABOLIC ENGINEERING, 2013, 15 :174-183
[52]   Identification and microbial production of a terpene-based advanced biofuel [J].
Peralta-Yahya, Pamela P. ;
Ouellet, Mario ;
Chan, Rossana ;
Mukhopadhyay, Aindrila ;
Keasling, Jay D. ;
Lee, Taek Soon .
NATURE COMMUNICATIONS, 2011, 2
[53]  
Rey L, 1996, MOL GEN GENET, V252, P237
[54]  
Sambrook J, 2001, MOL CLONING LAB MANU, V3rd
[55]   SMALL MOBILIZABLE MULTIPURPOSE CLONING VECTORS DERIVED FROM THE ESCHERICHIA-COLI PLASMIDS PK18 AND PK19 - SELECTION OF DEFINED DELETIONS IN THE CHROMOSOME OF CORYNEBACTERIUM-GLUTAMICUM [J].
SCHAFER, A ;
TAUCH, A ;
JAGER, W ;
KALINOWSKI, J ;
THIERBACH, G ;
PUHLER, A .
GENE, 1994, 145 (01) :69-73
[56]   Complete nucleotide sequence of pHG1:: A Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis [J].
Schwartz, E ;
Henne, A ;
Cramm, R ;
Eitinger, T ;
Friedrich, B ;
Gottschalk, G .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (02) :369-383
[57]   Prokka: rapid prokaryotic genome annotation [J].
Seemann, Torsten .
BIOINFORMATICS, 2014, 30 (14) :2068-2069
[58]   A BROAD HOST RANGE MOBILIZATION SYSTEM FOR INVIVO GENETIC-ENGINEERING - TRANSPOSON MUTAGENESIS IN GRAM-NEGATIVE BACTERIA [J].
SIMON, R ;
PRIEFER, U ;
PUHLER, A .
BIO-TECHNOLOGY, 1983, 1 (09) :784-791
[59]   FARNESYL PYROPHOSPHATE SYNTHETASE FROM BACILLUS-SUBTILIS [J].
TAKAHASHI, I ;
OGURA, K .
JOURNAL OF BIOCHEMISTRY, 1981, 89 (05) :1581-1587
[60]   Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale [J].
Takors, Ralf ;
Kopf, Michael ;
Mampel, Joerg ;
Bluemke, Wilfried ;
Blombach, Bastian ;
Eikmanns, Bernhard ;
Bengelsdorf, Frank R. ;
Weuster-Botz, Dirk ;
Duerre, Peter .
MICROBIAL BIOTECHNOLOGY, 2018, 11 (04) :606-625