Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals

被引:30
作者
Grenz, Sebastian [1 ]
Baumann, Philipp T. [1 ]
Rueckert, Christian [2 ]
Nebel, Bernd A. [3 ]
Siebert, Daniel [4 ,5 ]
Schwentner, Andreas [4 ]
Eikmanns, Bernhard J. [4 ]
Hauer, Bernhard [3 ]
Kalinowski, Joern [2 ]
Takors, Ralf [1 ]
Blombach, Bastian [1 ,5 ]
机构
[1] Univ Stuttgart, Inst Biochem Engn, Allmandring 31, D-70569 Stuttgart, Germany
[2] Bielefeld Univ, Ctr Biotechnol, Univ Str 27, D-33615 Bielefeld, Germany
[3] Univ Stuttgart, Dept Tech Biochem, Allmandring 31, D-70569 Stuttgart, Germany
[4] Univ Ulm, Inst Microbiol & Biotechnol, D-89069 Ulm, Germany
[5] Tech Univ Munich, Microbial Biotechnol, Campus Straubing Biotechnol & Sustainabil, Straubing, Germany
关键词
Hydrogenophaga pseudoflava; Syngas; Bisabolene; Carbon dioxide; Carbon monoxide; Hydrogen; COMPLETE NUCLEOTIDE-SEQUENCE; RALSTONIA-EUTROPHA H16; CARBON-MONOXIDE; ESCHERICHIA-COLI; CORYNEBACTERIUM-GLUTAMICUM; ALCALIGENES-EUTROPHUS; BIOMASS SYNGAS; CLONING; GENES; TRANSFORMATION;
D O I
10.1016/j.ymben.2019.07.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gasification is a suitable technology to generate energy-rich synthesis gas (syngas) from biomass or waste streams, which can be utilized in bacterial fermentation processes for the production of chemicals and fuels. Established microbial processes currently rely on acetogenic bacteria which perform an energetically inefficient anaerobic CO oxidation and acetogenesis potentially hampering the biosynthesis of complex and ATP-intensive products. Since aerobic oxidation of CO is energetically more favorable, we exploit in this study the Gram-negative beta-proteobacterium Hydrogenophaga pseudoflava DSM1084 as novel host for the production of chemicals from syngas. We sequenced and annotated the genome of H. pseudoflava and established a genetic engineering toolbox, which allows markerless chromosomal modification via the pk19mobsacB system and heterologous gene expression on pBBRMCS2-based plasmids. The toolbox was extended by identifying strong endogenous promotors such as P-gapA2 which proved to yield high expression under heterotrophic and autotrophic conditions. H. pseudoflava showed relatively fast heterotrophic growth in complex and minimal medium with sugars and organic acids which allows convenient handling in lab routines. In autotrophic bioreactor cultivations with syngas, H. pseudoflava exhibited a growth rate of 0.06 h(-1) and biomass specific uptakes rates of 14.2 +/- 0.3 mmol H(2)g(CDW)(-1) h(-1), 73.9 +/- 1.8 mmol CO g(CDW)(-1) h(-1), and 31.4 +/- 0.3 mmol O-2 g(CDW)(-1) h(-1). As proof of concept, we engineered the carboxydotrophic bacterium for the aerobic production of the C-15 sesquiterpene (E)-alpha-bisabolene from the C-1 carbon source syngas by heterologous expression of the (E)-alpha-bisabolene synthase gene agBIS. The resulting strain H. pseudoflava (pOCEx1:agBIS) produced 59 +/- 8 mu g (E)-alpha-bisabolene L-1 with a volumetric productivity Q(p) of 1.2 +/- 0.2 mu g L-1 h(-1) and a biomass-specific productivity q(p) of 13.1 +/- 0.6 mu g g(CDW)(-1) h(-1). The intrinsic properties and the genetic repertoire of H. pseudoflava make this carboxydotrophic bacterium a promising candidate for future aerobic production processes to synthesize more complex or ATP-intensive chemicals from syngas.
引用
收藏
页码:220 / 230
页数:11
相关论文
共 68 条
[1]   Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering [J].
Alonso-Gutierrez, Jorge ;
Kim, Eun-Mi ;
Batth, Tanveer S. ;
Cho, Nathan ;
Hu, Qijun ;
Chan, Leanne Jade G. ;
Petzold, Christopher J. ;
Hinson, Nathan J. ;
Adams, Paul D. ;
Keasling, Jay D. ;
Martin, Hector Garcia ;
Lee, Taek Soon .
METABOLIC ENGINEERING, 2015, 28 :123-133
[2]  
[Anonymous], ALIGNING SEQUENCE RE, DOI DOI 10.48550/ARXIV.1303.3997
[3]   Bacterial Anaerobic Synthesis Gas (Syngas) and CO2+H2 Fermentation [J].
Bengelsdorf, Frank R. ;
Beck, Matthias H. ;
Erz, Catarina ;
Hoffmeister, Sabrina ;
Karl, Michael M. ;
Riegler, Peter ;
Wirth, Steffen ;
Poehlein, Anja ;
Weuster-Botz, Dirk ;
Duerre, Peter .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 103, 2018, 103 :143-221
[4]   Terpenoid-based defenses in conifers:: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis) [J].
Bohlmann, J ;
Crock, J ;
Jetter, R ;
Croteau, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :6756-6761
[5]  
BOWIEN B, 1990, FEMS MICROBIOL LETT, V87, P445, DOI 10.1016/0378-1097(90)90493-A
[6]   Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of L-Lysine, L-Valine, and 2-Ketoisovalerate [J].
Buchholz, Jens ;
Schwentner, Andreas ;
Brunnenkan, Britta ;
Gabris, Christina ;
Grimm, Simon ;
Gerstmeir, Robert ;
Takors, Ralf ;
Eikmanns, Bernhard J. ;
Blombach, Bastian .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (18) :5566-5575
[7]   [NiFe]-hydrogenases of Ralstonia eutropha H16:: Modular enzymes for oxygen-tolerant biological hydrogen oxidation [J].
Burgdorf, T ;
Lenz, O ;
Buhrke, T ;
van der Linden, E ;
Jones, AK ;
Albracht, SPJ ;
Friedrich, B .
JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2005, 10 (2-4) :181-196
[8]   A simple bacterial transformation method using magnesium- and calcium-aminoclays [J].
Choi, Hyoung-An ;
Lee, Young-Chul ;
Lee, Jin-Young ;
Shin, Hyun-Jae ;
Han, Hyo-Kyung ;
Kim, Geun-Joong .
JOURNAL OF MICROBIOLOGICAL METHODS, 2013, 95 (02) :97-101
[9]   PHYSIOLOGICAL-CHARACTERISTICS OF VARIOUS SPECIES OF STRAINS OF CARBOXYDOBACTERIA [J].
CYPIONKA, H ;
MEYER, O ;
SCHLEGEL, HG .
ARCHIVES OF MICROBIOLOGY, 1980, 127 (03) :301-307
[10]   Commercial Biomass Syngas Fermentation [J].
Daniell, James ;
Koepke, Michael ;
Simpson, Sean Dennis .
ENERGIES, 2012, 5 (12) :5372-5417