Linear equations in variables which lie in a multiplicative group

被引:143
作者
Evertse, JH [1 ]
Schlickewei, HP
Schmidt, WM
机构
[1] Leiden Univ, Leiden, Netherlands
[2] Univ Marburg, Marburg, Germany
[3] Univ Colorado, Boulder, CO 80309 USA
关键词
D O I
10.2307/3062133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lot K be a field of characteristic 0 and lot n be a natural number. Let Gamma be a subgroup of the multiplicative group (K*)(n) of finite rank r. Given a(1), ..., a(n) is an element of K* write A(a(1), ..., a(n), Gamma) for the number of solutions x = (x(1), ..., x(n)) is an element of Gamma of the equation a(1)x(1) + (...) + a(n)x(n) = 1, such that no proper subsum of a(1)x(1) + (...) + a(n)x(n) vanishes. We derive an explicit upper bound for A (a(1), ..., a(n), Gamma) which depends only on the dimension n and on the rank r.
引用
收藏
页码:807 / 836
页数:30
相关论文
共 28 条
[1]  
[Anonymous], LONDON MATH SOC LECT
[2]   A REMARQUABLE FAMILY OF RECURRENT SEQUENCES [J].
BAVENCOFFE, E ;
BEZIVIN, JP .
MONATSHEFTE FUR MATHEMATIK, 1995, 120 (3-4) :189-203
[3]  
Beukers F, 1996, ACTA ARITH, V78, P189
[4]  
Bombieri E., 1995, Internat. Math. Res. Notices, P333
[5]  
DAVID S, 2000, ANN SCUOLA NORM SUP, V29, P729
[6]  
David S., 1999, ANN SCUOLA NORM-SCI, V28, P489
[7]  
Dobrowolski, 1979, ACTA ARITH, V34, P391, DOI DOI 10.4064/AA-34-4-391-401
[8]  
ERDOS P, 1988, COMPOS MATH, V66, P37
[9]   THE NUMBER OF SOLUTIONS OF DECOMPOSABLE FORM EQUATIONS [J].
EVERTSE, JH .
INVENTIONES MATHEMATICAE, 1995, 122 (03) :559-601
[10]   ON EQUATIONS IN S-UNITS AND THE THUE-MAHLER EQUATION [J].
EVERTSE, JH .
INVENTIONES MATHEMATICAE, 1984, 75 (03) :561-584