High temperature oxidation and insulation behavior of plasma-sprayed nanostructured thermal barrier coatings

被引:55
作者
Zhou, Feifei [1 ]
Wang, You [1 ]
Wang, Liang [1 ,2 ]
Cui, Zhongyuan [1 ]
Zhang, Zhenguo [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Dept Mat Sci, Lab Nano Surface Engn, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Key Lab Inorgan Coating Mat CAS, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanostructured TBCs; APS; High temperature oxidation; Thermal insulation; BOND COAT; CONDUCTIVITY; SYSTEMS; MICROSTRUCTURE; SIMULATION; CERAMICS; ENGINE;
D O I
10.1016/j.jallcom.2017.02.073
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal barrier coatings (TBCs) for more efficient gas turbine engines require higher operating temperature. Adopting pyrochlore structure materials such as rare-earth zirconate and double-ceramic-layer (DCL) structure can well satisfy service demands of TBCs at elevated temperature. The nanostructured single-ceramic-layer (SCL) 8YSZ, DCL Sm2Zr2O7 (SZ)/8YSZ and doping 8 wt% CeO2 nanoparticles in SZ (8CSZ)/8YSZ TBCs were prepared by atmospheric plasma spraying (APS) in this work. The high temperature oxidation behavior and thermal insulation property of the three kinds of as-sprayed TBCs were investigated systematically at 1000 degrees C and 1200 degrees C. The results indicate that the nanostructured DCL 8CSZ/SYSZ TBCs have the best oxidation resistance and thermal insulation property at different temperatures among others. The influence of microstructure on thermal insulation property of the coating has been discussed in detail. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:614 / 623
页数:10
相关论文
共 34 条
[1]  
Bernard B., 2016, SURF COAT TECHNOL
[2]   A physics-based life prediction methodology for thermal barrier coating systems [J].
Busso, E. P. ;
Wright, L. ;
Evans, H. E. ;
McCartney, L. N. ;
Saunders, S. R. J. ;
Osgerby, S. ;
Nunn, J. .
ACTA MATERIALIA, 2007, 55 (05) :1491-1503
[3]   Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam [J].
Cai, Jie ;
Guan, Qingfeng ;
Hou, Xiuli ;
Wang, Zhiping ;
Su, Jingxin ;
Han, Zhiyong .
APPLIED SURFACE SCIENCE, 2014, 317 :360-369
[4]   Correlation of thermal conductivity of suspension plasma sprayed yttria stabilized zirconia coatings with some microstructural effects [J].
Carpio, Pablo ;
Blochet, Quentin ;
Pateyron, Bernard ;
Pawlowski, Lech ;
Dolores Salvador, Maria ;
Borrell, Amparo ;
Sanchez, Enrique .
MATERIALS LETTERS, 2013, 107 :370-373
[5]   Analysis of several test methods about heat insulation capabilities of ceramic thermal barrier coatings [J].
Chen Dong ;
Chu Zuo-ming ;
Zhang Qiang .
INTERNATIONAL FEDERATION FOR HEAT TREATMENT AND SURFACE ENGINEERING (20TH CONGRESS), 2013, 50 :248-252
[6]   Effect of Time and Temperature on Thermal Barrier Coating Failure Mode Under Oxidizing Environment [J].
Cheruvu, N. S. ;
Chan, K. S. ;
Gandy, D. W. .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2009, 131 (02) :1-7
[7]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[8]   Materials selection guidelines for low thermal conductivity thermal barrier coatings [J].
Clarke, DR .
SURFACE & COATINGS TECHNOLOGY, 2003, 163 :67-74
[9]   Mechanisms controlling the durability of thermal barrier coatings [J].
Evans, AG ;
Mumm, DR ;
Hutchinson, JW ;
Meier, GH ;
Pettit, FS .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) :505-553
[10]   Mechanics-based scaling laws for the durability of thermal barrier coatings [J].
Evans, AG ;
He, MY ;
Hutchinson, JW .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (3-4) :249-271