Photocatalytic degradation of levofloxacin by a novel Sm6WO12/g-C3N4 heterojunction: Performance, mechanism and degradation pathways

被引:104
作者
Prabavathi, Seenivasan Laskhmi [1 ]
Saravanakumar, Karunamoorthy [2 ]
Park, Chang Min [2 ]
Muthuraj, Velluchamy [1 ]
机构
[1] VHN Senthikumara Nadar Coll Autonomous, Dept Chem, Virudunagar 626001, Tamil Nadu, India
[2] Kyungpook Natl Univ, Dept Environm Engn, 80 Daehak Ro, Daegu 41566, South Korea
关键词
Sm6WO12/g-C3N4; nanocomposite; Levofloxacin; Photocatalysis; Heterojuction formation; ELECTRO-FENTON PROCESS; COMPOSITE PHOTOCATALYSTS; ANTIBIOTIC LEVOFLOXACIN; HYDROTHERMAL SYNTHESIS; EFFICIENT DEGRADATION; G-C3N4; CONSTRUCTION; NANOCOMPOSITES; IDENTIFICATION; MICROSPHERES;
D O I
10.1016/j.seppur.2020.117985
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Recent year pharmaceutical pollutants have highly detected in environment, because they do not completely mineralized and remain toxic. Semiconductor photocatalyst materials have well recognized as promising technology for environmental pollutants removal in the presence of visible light. In this work, a novel binary Sm6WO12 modified g-C3N4 nanosheets heterojunction was fabricated via simple facile method. The morphology of the newly prepared g-C3N4 and Sm6WO12 was confirmed as nanosheets and nanorods by using microscopy techniques. The sequence of characterization results verified that the Sm6WO12/g-C3N4 synergistically integrate the excellent properties and successful construction of hetero-structure between the Sm6WO12 and g-C3N4. The Sm6WO12/g-C3N4 nanocomposite heterojunction catalyst shows higher photocatalytic efficiency towards degrading pharmaceutical pollutant levofloxacin compared to individual g-C3N4 and Sm6WO12 photocatalyst. The results indicate that about 90.8% of levofloxacin was degraded after 70 min in the presence of Sm6WO12/g-C3N4 nanocomposite. Through radical trapping experiments, O-2(center dot-) and (OH)-O-center dot were proved to be the leading reactive oxidative species contributing to degradation of levofloxacin. Possible photodegradation pathways were proposed based on the detected intermediate products and transformation products. Furthermore, the synthesized Sm6WO12/g-C3N4 heterojunction demonstrated excellent reusability and stability without of loss of photo catalytic activity. Favorably, this study might provide a deep insight into mechanism and possible degradation pathways of levofloxacin by Sm6WO12 modified g-C3N4 heterojunction photocatalyst.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Solvothermal preparation of CuO/g-C3N4 and photocatalytic degradation of ciprofloxacin
    Jiang, Wenming
    Sukhotu, Rujira
    Huang, Yani
    Chen, Jingxia
    Li, Fang
    Yang, Jingjing
    [J]. JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2024,
  • [32] Analysis of Tetracycline Modification Based on g-C3N4 Photocatalytic Degradation
    Li, Jinghang
    Shi, Qi
    Song, Chaoyu
    Shi, Chenxi
    Lv, Yuguang
    [J]. INORGANICS, 2025, 13 (03)
  • [33] Effect of Contact Mode of TiO2/g-C3N4 Heterojunction on Photocatalytic Performance for Dye Degradation
    Deng, Zijian
    Osuga, Ryota
    Matsubara, Masaki
    Kanie, Kiyoshi
    Muramatsu, Atsushi
    [J]. MATERIALS TRANSACTIONS, 2023, 64 (12) : 2782 - 2791
  • [34] Construction of Z-scheme SbVO4/g-C3N4 heterojunction with efficient photocatalytic degradation performance
    Wang, Ling
    Zhu, Xiaoya
    Rong, Jian
    Feng, Chujun
    Liu, Congtian
    Wang, Yanan
    Li, Zhongyu
    Xu, Song
    [J]. SOLID STATE SCIENCES, 2024, 155
  • [35] Improved photocatalytic performance of g-C3N4 by Eu doping for ciprofloxacin degradation
    Qin, Shuyu
    Zheng, Yinlu
    Peng, Junhao
    Wu, Haoyi
    Zhang, Lei
    [J]. MATERIALS LETTERS, 2025, 390
  • [36] Photocatalytic degradation of tetracycline by g-C3N4/stilbite under visible light: Mechanistic insights and degradation pathways
    Gao, Sihang
    Chen, Xiaoting
    Fang, Xindong
    Cheng, Ziqi
    Wang, Yubo
    Gao, Dengzheng
    Guo, Qingbin
    Wang, Li
    Hu, Xiaolong
    [J]. MATERIALS RESEARCH BULLETIN, 2024, 180
  • [37] Rational Design of 0D/2D WO3/g-C3N4 Z-scheme Hybrid for Improving Photocatalytic Dye Degradation
    Okoroafor, Esther C.
    Maouche, Chanez
    Liu, Qinqin
    Hong, Xiaoyang
    Rao, Shaosheng
    Umba, F. M.
    Yang, J.
    [J]. CHEMISTRYSELECT, 2022, 7 (02):
  • [38] α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride
    Qi, Huajin
    Wang, Chenyu
    Shen, Luping
    Wang, Hongmei
    Lian, Yuan
    Zhang, Huanxia
    Ma, Hongxia
    Zhang, Yong
    Zhang, Jin Zhong
    [J]. CATALYSTS, 2023, 13 (06)
  • [39] Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants
    Zhang, Xueyan
    Wang, Xinyue
    Meng, Jiaqi
    Liu, Yunqing
    Ren, Miao
    Guo, Yihang
    Yang, Yuxin
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 255 (255)
  • [40] Photocatalytic degradation of a pharmaceutical pollutant (Levofloxacin) by two-hybrid photocatalysts g-C3N4/TiO2 and WO3/TiO2: comparative study
    Trifi, B.
    Nahdi, A.
    Othmani, A.
    Aloui, Z.
    Essid, M.
    Dhaouadi, H.
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (04) : 3747 - 3760