Transverse bifurcations of homoclinic cycles

被引:32
作者
Chossat, P
Krupa, M
Melbourne, I
Scheel, A
机构
[1] VIENNA TECH UNIV,INST ANGEW & NUMER MATH,A-1040 VIENNA,AUSTRIA
[2] INST NONLINEAIRE NICE,UMR 129 CNRS,F-06560 VALBONNE,FRANCE
[3] UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77204
[4] FREE UNIV BERLIN,INST MATH 1,D-14195 BERLIN,GERMANY
来源
PHYSICA D | 1997年 / 100卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(96)00186-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Homoclinic cycles exist robustly in dynamical systems with symmetry, and may undergo various bifurcations, not all of which have an analog in the absence of symmetry. We analyze such a bifurcation, the transverse bifurcation, and uncover a variety of phenomena that can be distinguished representation-theoretically. For example, exponentially flat branches of periodic solutions (a typical feature of bifurcation from homoclinic cycles) occur for some but not all representations of the symmetry group. Our study of transverse bifurcations is motivated by the problem of intermittent dynamos in rotating convection.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 25 条
[1]  
Busse F. H., 1979, Recent developments in theoretical and experimental fluid mechanics. Compressible and incompressible flows, P376
[2]   CONVECTION IN A ROTATING LAYER - SIMPLE CASE OF TURBULENCE [J].
BUSSE, FH ;
HEIKES, KE .
SCIENCE, 1980, 208 (4440) :173-175
[3]   BIFURCATION FROM O(2) SYMMETRICAL HETEROCLINIC CYCLES WITH 3 INTERACTING MODES [J].
CAMPBELL, SA ;
HOLMES, P .
NONLINEARITY, 1991, 4 (03) :697-726
[4]   Heteroclinic cycles and modulated travelling waves in a system with D4 symmetry [J].
Campbell, S.A. ;
Holmes, P. .
Physica D: Nonlinear Phenomena, 1992, 59 (1-3)
[5]   CONVECTION-DRIVEN HYDROMAGNETIC DYNAMO [J].
CHILDRESS, S ;
SOWARD, AM .
PHYSICAL REVIEW LETTERS, 1972, 29 (13) :837-+
[6]  
Chow S.-N., 1990, J DYNAMICAL SYSTEMS, V2, P177
[7]  
DOSREIS GL, T AM MATH SOC, V283, P633
[8]   STATIONARY BIFURCATION TO LIMIT-CYCLES AND HETEROCLINIC CYCLES [J].
FIELD, M ;
SWIFT, JW .
NONLINEARITY, 1991, 4 (04) :1001-1043
[9]   EQUIVARIANT DYNAMICAL-SYSTEMS [J].
FIELD, MJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 259 (01) :185-205
[10]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192