Unbiased Warped-Area Sampling for Differentiable Rendering

被引:90
作者
Bangaru, Sai Praveen [1 ]
Li, Tzu-Mao [1 ]
Durand, Fredo [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2020年 / 39卷 / 06期
关键词
inverse graphics; differentiable rendering; light transport; differentiating visibility;
D O I
10.1145/3414685.3417833
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Differentiable rendering computes derivatives of the light transport equation with respect to arbitrary 3D scene parameters, and enables various applications in inverse rendering and machine learning. We present an unbiased and efficient differentiable rendering algorithm that does not require explicit boundary sampling. We apply the divergence theorem to the derivative of the rendering integral to convert the boundary integral into an area integral. We rewrite the converted area integral to a form that is suitable for Monte Carlo rendering. We then develop an efficient Monte Carlo sampling algorithm for solving the area integral. Our method can be easily plugged into a traditional path tracer and does not require dedicated data structures for sampling boundaries. We analyze the convergence properties through bias-variance metrics, and demonstrate our estimator's advantages over existing methods for some synthetic inverse rendering examples.
引用
收藏
页数:18
相关论文
共 50 条
[21]  
Li Zhengqin, 2019, ARXIV190502722
[22]   Material Editing Using a Physically Based Rendering Network [J].
Liu, Guilin ;
Ceylan, Duygu ;
Yumer, Ersin ;
Yang, Jimei ;
Lien, Jyh-Ming .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2280-2288
[23]   Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning [J].
Liu, Shichen ;
Li, Tianye ;
Chen, Weikai ;
Li, Hao .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7707-7716
[24]   OpenDR: An Approximate Differentiable Renderer [J].
Loper, Matthew M. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :154-169
[25]   Reparameterizing Discontinuous Integrands for Differentiable Rendering [J].
Loubet, Guillaume ;
Holzschuch, Nicolas ;
Jakob, Wenzel .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06)
[26]   Langevin Monte Carlo Rendering with Gradient-based Adaptation [J].
Luan, Fujun ;
Zhao, Shuang ;
Bala, Kavita ;
Gkioulekas, Ioannis .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04)
[27]   On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods [J].
Lyne, Anne-Marie ;
Girolami, Mark ;
Atchade, Yves ;
Strathmann, Heiko ;
Simpson, Daniel .
STATISTICAL SCIENCE, 2015, 30 (04) :443-467
[28]  
Magnus J., 1999, Matrix differential calculus with applications in statistics and econometrics
[29]   A general method for debiasing a Monte Carlo estimator [J].
McLeish, Don .
MONTE CARLO METHODS AND APPLICATIONS, 2011, 17 (04) :301-315
[30]  
MITCHELL R, 1992, PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON MICROCOMPUTER AND MICROPROCESSOR APPLICATIONS, VOLS I AND II, P283