Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum-evidence from a mathematical model

被引:14
作者
Millat, Thomas [1 ,3 ]
Voigt, Christine [2 ]
Janssen, Holger [2 ]
Cooksley, Clare M. [3 ]
Winzer, Klaus [3 ]
Minton, Nigel P. [3 ]
Bahl, Hubert [2 ]
Fischer, Ralf-Joerg [2 ]
Wolkenhauer, Olaf [1 ,4 ]
机构
[1] Univ Rostock, Inst Comp Sci, Dept Syst Biol & Bioinformat, D-18057 Rostock, Germany
[2] Univ Rostock, Inst Biol Sci, Div Microbiol, D-18051 Rostock, Germany
[3] Univ Nottingham, Sch Life Sci, Clostridia Res Grp, BBRSC Sustainable Bioenergy Ctr, Nottingham NG7 2RD, England
[4] Univ Stellenbosch, Wallenberg Res Ctr, Inst Adv Study STIAS, ZA-7600 Stellenbosch, South Africa
基金
英国生物技术与生命科学研究理事会;
关键词
Clostridium acetobutylicum; ctfA mutant; Acid re-assimilation; pH-induced metabolic shift; Mathematical modelling; BUTANOL-ETHANOL FERMENTATION; CONTINUOUS-CULTURE; MOLECULAR CHARACTERIZATION; DOWN-REGULATION; ATCC; 824; ACETONE; SOLVENTOGENESIS; DEHYDROGENASE; ACIDOGENESIS; ENZYMES;
D O I
10.1007/s00253-014-5987-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.
引用
收藏
页码:9059 / 9072
页数:14
相关论文
共 64 条
[41]  
Madigan M.T., 2009, BROCK BIOL MICROORGA
[42]   Proteome Reference Map and Comparative Proteomic Analysis between a Wild Type Clostridium acetobutylicum DSM 1731 and its Mutant with Enhanced Butanol Tolerance and Butanol Yield [J].
Mao, Shaoming ;
Luo, Yuanming ;
Zhang, Tianrui ;
Li, Jinshan ;
Bao, Guanhui ;
Zhu, Yan ;
Chen, Zugen ;
Zhang, Yanping ;
Li, Yin ;
Ma, Yanhe .
JOURNAL OF PROTEOME RESEARCH, 2010, 9 (06) :3046-3061
[43]   Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico [J].
McAnulty, Michael J. ;
Yen, Jiun Y. ;
Freedman, Benjamin G. ;
Senger, Ryan S. .
BMC SYSTEMS BIOLOGY, 2012, 6
[44]   Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture [J].
Millat, Thomas ;
Janssen, Holger ;
Bahl, Hubert ;
Fischer, Ralf-Joerg ;
Wolkenhauer, Olaf .
MICROBIAL BIOTECHNOLOGY, 2013, 6 (05) :526-539
[45]   A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures [J].
Millat, Thomas ;
Janssen, Holger ;
Thorn, Graeme J. ;
King, John R. ;
Bahl, Hubert ;
Fischer, Ralf-Joerg ;
Wolkenhauer, Olaf .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (14) :6451-6466
[46]   Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052 [J].
Milne, Caroline B. ;
Eddy, James A. ;
Raju, Ravali ;
Ardekani, Soroush ;
Kim, Pan-Jun ;
Senger, Ryan S. ;
Jin, Yong-Su ;
Blaschek, Hans P. ;
Price, Nathan D. .
BMC SYSTEMS BIOLOGY, 2011, 5
[47]   Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum [J].
Nölling, J ;
Breton, G ;
Omelchenko, MV ;
Makarova, KS ;
Zeng, QD ;
Gibson, R ;
Lee, HM ;
Dubois, J ;
Qiu, DY ;
Hitti, J ;
Wolf, YI ;
Tatusov, RL ;
Sabathe, F ;
Doucette-Stamm, L ;
Soucaille, P ;
Daly, MJ ;
Bennett, GN ;
Koonin, EV ;
Smith, DR .
JOURNAL OF BACTERIOLOGY, 2001, 183 (16) :4823-4838
[48]   EQUATIONS AND CALCULATIONS FOR FERMENTATIONS OF BUTYRIC-ACID BACTERIA [J].
PAPOUTSAKIS, ET .
BIOTECHNOLOGY AND BIOENGINEERING, 1984, 26 (02) :174-187
[49]   MOLECULAR-CLONING OF AN ALCOHOL (BUTANOL) DEHYDROGENASE GENE-CLUSTER FROM CLOSTRIDIUM-ACETOBUTYLICUM ATCC-824 [J].
PETERSEN, DJ ;
WELCH, RW ;
RUDOLPH, FB ;
BENNETT, GN .
JOURNAL OF BACTERIOLOGY, 1991, 173 (05) :1831-1834
[50]  
ROGERS P, 1993, BIOTECHNOL, V25, P25