ON STRONG EXPONENTIAL LIMIT SHADOWING PROPERTY

被引:0
作者
Darabi, Ali [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Dept Math, Ahvaz, Iran
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2022年 / 37卷 / 04期
关键词
Exponential limit shadowing; limit shadowing; hyperbolic set; Omega-stability; positively expansive map;
D O I
10.4134/CKMS.c210394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we show that the strong exponential limit shadowing property (SELmSP, for short), which has been recently introduced, exists on a neighborhood of a hyperbolic set of a diffeomorphism. We also prove that Omega-stable diffeomorphisms and L-hyperbolic homeomorphisms have this type of shadowing property. By giving examples, it is shown that this type of shadowing is different from the other shadowings, and the chain transitivity and chain mixing are not necessary for it. Furthermore, we extend this type of shadowing property to positively expansive maps with the shadowing property.
引用
收藏
页码:1249 / 1258
页数:10
相关论文
共 14 条
[1]   Exponential limit shadowing [J].
Ahmadi, S. A. ;
Molaei, M. R. .
ANNALES POLONICI MATHEMATICI, 2013, 108 (01) :1-10
[2]  
Akin E., 2003, MEM AM MATH SOC, V164, P783, DOI [10.1090/memo/0783, DOI 10.1090/MEMO/0783]
[3]   On homeomorphisms with the two-sided limit shadowing property [J].
Carvalho, Bernardo ;
Kwietniak, Dominik .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :801-813
[4]   Limit shadowing property [J].
Eirola, T ;
Nevanlinna, O ;
Pilyugin, SY .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) :75-92
[5]   The asymptotic average shadowing property and transitivity [J].
Gu, Rongbao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) :1680-1689
[6]   On almost specification and average shadowing properties [J].
Kulczycki, Marcin ;
Kwietniak, Dominik ;
Oprocha, Piotr .
FUNDAMENTA MATHEMATICAE, 2014, 224 (03) :241-278
[7]   Various shadowing properties and their equivalence [J].
Lee, K ;
Sakai, K .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) :533-540
[8]  
Palmer K., 2000, SHADOWING DYNAMICAL, DOI 10.1007/978-1-4757-3210-8
[9]   Sets of dynamical systems with various limit shadowing properties [J].
Pilyugin, Sergei Yu. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (03) :747-775
[10]   Lipschitz shadowing implies structural stability [J].
Pilyugin, Sergei Yu ;
Tikhomirov, Sergey .
NONLINEARITY, 2010, 23 (10) :2509-2515