Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability

被引:348
|
作者
Tian, Jingjing [1 ]
Xue, Qifan [1 ]
Tang, Xiaofeng [2 ]
Chen, Yuxuan [3 ]
Li, Ning [2 ,4 ]
Hu, Zhicheng [1 ]
Shi, Tingting [5 ]
Wang, Xin [3 ]
Huang, Fei [1 ]
Brabec, Christoph J. [2 ]
Yip, Hin-Lap [1 ,6 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[2] Friedrich Alexander Univ Erlangen Nuremberg, Inst Mat Elect & Energy Technol i MEET, Martensstr 7, D-91058 Erlangen, Germany
[3] South China Normal Univ, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China
[4] Zhengzhou Univ, Natl Engn Res Ctr Adv Polymer Proc Technol, Zhengzhou 450002, Henan, Peoples R China
[5] Jinan Univ, Guangzhou Key Lab Vacuum Coating Technol & New En, Dept Phys, Siyuan Lab, Guangzhou 510632, Guangdong, Peoples R China
[6] South China Inst Collaborat Innovat, Innovat Ctr Printed Photovolta, Dongguan 523808, Peoples R China
关键词
all-inorganic perovskite solar cells; high efficiency; interface modification; photoinduced halide segregation; surface passivation; HIGHLY EFFICIENT; HALIDE PEROVSKITES; PHASE; FORMAMIDINIUM; PERFORMANCE; POLYMER; RECOMBINATION; SEGREGATION; PASSIVATION; MANAGEMENT;
D O I
10.1002/adma.201901152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A synergic interface design is demonstrated for photostable inorganic mixed-halide perovskite solar cells (PVSCs) by applying an amino-functionalized polymer (PN4N) as cathode interlayer and a dopant-free hole-transporting polymer poly[5,5 '-bis(2-butyloctyl)-(2,2 '-bithiophene)-4,4 '-dicarboxylate-alt-5,5 '-2,2 '-bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper-lying highest occupied molecular orbital (HOMO) level provides a better energy-level matching at the anode, leading to a significant enhancement in open-circuit voltage (V-oc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high-quality all-inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all-inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Vacuum-Controlled Growth of CsPbI2Br for Highly Efficient and Stable All-Inorganic Perovskite Solar Cells
    Wang, Tianyi
    Yang, Yifan
    Zhang, Yu
    Nian, Li
    Wang, Peng
    Qian, Yinping
    Rong, Qikun
    Zhou, Guofu
    Li, Na
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) : 21539 - 21547
  • [42] A double perovskite participation for promoting stability and performance of Carbon-Based CsPbI2Br perovskite solar cells
    Han, Qianji
    Yang, Shuzhang
    Wang, Liang
    Yu, Fengyang
    Cai, Xiaoyong
    Ma, Tingli
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 606 : 800 - 807
  • [43] Synergy of Hydrophobic Surface Capping and Lattice Contraction for Stable and High-Efficiency Inorganic CsPbI2Br Perovskite Solar Cells
    Wang, Haoran
    Bian, Hui
    Jin, Zhiwen
    Liang, Lei
    Bai, Dongliang
    Wang, Qian
    Liu, Shengzhong F.
    SOLAR RRL, 2018, 2 (12):
  • [44] Perovskite-Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI2Br Solar Cells
    Xie, Pengfei
    Zhang, Guizhi
    Yang, Zechao
    Pan, Zhenxiao
    Fang, Yueping
    Rao, Huashang
    Zhong, Xinhua
    SOLAR RRL, 2020, 4 (11)
  • [45] Fluorinated Interfaces for Efficient and Stable Low-Temperature Carbon-Based CsPbI2Br Perovskite Solar Cells
    Zhang, Xiang
    Zhang, Dan
    Zhou, Yuan
    Du, Yunxiao
    Jin, Junjun
    Zhu, Zhenkun
    Wang, Zhen
    Cui, Xiaxia
    Li, Jinhua
    Wu, Sujuan
    Zhang, Jing
    Tai, Qidong
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (38)
  • [46] Boosting the Stability of Fully-Inorganic Perovskite Solar Cells through Samarium Doped CsPbI2Br Perovskite
    Patil, Jyoti, V
    Mali, Sawanta S.
    Hong, Chang Kook
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (43) : 16364 - 16371
  • [47] The sulfur-rich small molecule boosts the efficiency of carbon-based CsPbI2Br perovskite solar cells to approaching 14%
    Han, Qianji
    Yang, Shuzhang
    Wang, Liang
    Yu, Fengyang
    Zhang, Chu
    Wu, Mingxing
    Ma, Tingli
    SOLAR ENERGY, 2021, 216 : 351 - 357
  • [48] Black phosphorus quantum dots as an effective perovskite interfacial modification layer for efficient low-temperature processed all-inorganic CsPbI2Br perovskite solar cells
    Lin, Xiaofeng
    Cheng, Peng-Peng
    Zhang, Yong-Wen
    Tan, Wan-Yi
    Yu, Dingshan
    Yi, Guobin
    Min, Yonggang
    SOLAR ENERGY, 2020, 206 : 793 - 798
  • [49] Dual-passivation strategy on CsPbI2Br perovskite solar cells for reduced voltage deficit and enhanced stability
    Li, Hui
    Wang, Zhongxiao
    Wang, Lian
    Chang, Bohong
    Liu, Zhen
    Pan, Lu
    Wu, Yutong
    Yin, Longwei
    NANO ENERGY, 2022, 103
  • [50] Crystallization Improvement and Defect Passivation of CsPbI2Br Perovskite Solar Cells by Introducing Additive
    Li, Zhuowei
    Wang, Qian
    Liu, Wenwen
    Gao, Hanxiao
    Deng, Yanyu
    Liu, Chunyu
    Guo, Wenbin
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (05): : 3193 - 3197