Bounds on the location of the maximum Stirling numbers of the second kind

被引:3
作者
Yu, Yaming [1 ]
机构
[1] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA
关键词
Darroch's rule; Stirling number; Unimodal sequence;
D O I
10.1016/j.disc.2009.02.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(n, k) denote the Stirling number of the second kind, and let K(n) be such that S(n, K(n) - 1) < S(n, K(n)) >= S(n, K(n) + 1). Using a probabilistic argument, we show that, for all n >= 2. left perpendiculare(w(n))right perpendicular - 2 <= K(n) <= left perpendiculare(w(n))right perpendicular + 1. where left perpendicularxright perpendicular denotes the integer part of x, and w(n) denotes Lambert's W function. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4624 / 4627
页数:4
相关论文
共 16 条
  • [1] [Anonymous], 2002, INTEGERS
  • [2] BACH G, 1968, J REINE ANGEW MATH, V233, P213
  • [3] CANFIELD ER, 1978, STUD APPL MATH, V59, P83
  • [4] CANFIELD ER, 2005, INTEGERS ELECTR J CO, V5, pA9
  • [5] ON DISTRIBUTION OF NUMBER OF SUCCESSES IN INDEPENDENT TRIALS
    DARROCH, JN
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03): : 1317 - &
  • [6] DOBSON AJ, 1968, J COMB THEORY, V5, P212
  • [7] HARBORTH H, 1968, J REINE ANGEW MATH, V230, P213
  • [8] HARDY GH, 1964, INEQUALITIES
  • [9] STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL
    HARPER, LH
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02): : 410 - &
  • [10] KANOLD HJ, 1968, J REINE ANGEW MATH, V230, P211