A deterministic algorithm for global multi-objective optimization

被引:28
作者
Evtushenko, Yu. G. [1 ]
Posypkin, M. A. [1 ,2 ]
机构
[1] Dorodnicyn Comp Ctr RAS, Inst Russian Acad Sci, Moscow 119333, Russia
[2] Inst Informat Transmiss Problems RAS, Moscow 127994, Russia
基金
俄罗斯基础研究基金会;
关键词
multi-objective optimization; deterministic methods; robotic manipulator; space covering technique; POINTS;
D O I
10.1080/10556788.2013.854357
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper describes a method for solving multi-objective optimization problems with box constraints. Unlike existing approaches, the proposed method not only constructs a finite approximation of Pareto frontier, but also proves its epsilon-optimality. The paper gives a detailed explanation of basic theoretical concepts behind the method and describes the algorithmic implementation. A practically important application of the proposed method to finding the working space of a robotic manipulator is presented.
引用
收藏
页码:1005 / 1019
页数:15
相关论文
共 34 条
  • [1] [Anonymous], 1999, EVOLUTIONARY ALGORIT
  • [2] [Anonymous], 2001, 103 ETH ZUR
  • [3] [Anonymous], 1996, Rigorous global search: continuous problems. Nonconvex optimization and its applications
  • [4] [Anonymous], 2005, MULTICRITERIA OPTIMI
  • [5] An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem
    Benson, HP
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (01) : 1 - 24
  • [6] A SYNTHESIS ALGORITHM FOR 3-REVOLUTE MANIPULATORS BY USING AN ALGEBRAIC FORMULATION OF WORKSPACE BOUNDARY
    CECCARELLI, M
    [J]. JOURNAL OF MECHANICAL DESIGN, 1995, 117 (02) : 298 - 302
  • [7] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [8] Deb K., 2010, MULTIOBJECTIVE OPTIM
  • [9] Ehrgott M., 2007, 654 U AUCKL
  • [10] An approximation algorithm for convex multi-objective programming problems
    Ehrgott, Matthias
    Shao, Lizhen
    Schoebel, Anita
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (03) : 397 - 416