Quantum hacking on quantum key distribution using homodyne detection

被引:89
作者
Huang, Jing-Zheng [1 ,2 ]
Kunz-Jacques, Sebastien [3 ]
Jouguet, Paul [3 ]
Weedbrook, Christian [4 ,5 ]
Yin, Zhen-Qiang [1 ,2 ]
Wang, Shuang [1 ,2 ]
Chen, Wei [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Han, Zheng-Fu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] SeQureNet, F-75013 Paris, France
[4] Univ Toronto, Dept Phys, Toronto, ON M5S 3G4, Canada
[5] QKD Corp, Toronto, ON M5G 1L6, Canada
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
CRYPTOGRAPHY; INFORMATION;
D O I
10.1103/PhysRevA.89.032304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.
引用
收藏
页数:7
相关论文
共 32 条
[1]   COUPLING BETWEEN PARALLEL OPTICAL FIBER CORES - CRITICAL-EXAMINATION [J].
ANKIEWICZ, A ;
SNYDER, AW ;
ZHENG, XH .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1986, 4 (09) :1317-1323
[2]  
[Anonymous], 2006, PHYS REV A, V73
[3]  
Bachor H.-A., 2003, A Guide to Experiments in Quantum Optics, V2nd
[4]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[5]   A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution [J].
Chi, Yue-Meng ;
Qi, Bing ;
Zhu, Wen ;
Qian, Li ;
Lo, Hoi-Kwong ;
Youn, Sun-Hyun ;
Lvovsky, A. I. ;
Tian, Liang .
NEW JOURNAL OF PHYSICS, 2011, 13
[6]   Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[7]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2
[8]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[9]   Testing quantum devices:: Practical entanglement verification in bipartite optical systems [J].
Haeseler, Hauke ;
Moroder, Tobias ;
Luetkenhaus, Norbert .
PHYSICAL REVIEW A, 2008, 77 (03)
[10]   Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack [J].
Huang, Jing-Zheng ;
Weedbrook, Christian ;
Yin, Zhen-Qiang ;
Wang, Shuang ;
Li, Hong-Wei ;
Chen, Wei ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW A, 2013, 87 (06)