The physical treatment/chemical treatments for recycling of spent lithium-ion battery modules in used hybrid electric vehicles as cathodic active materials were performed. The result by physical treatment showed that over 95 % valuable metals such as Co, Li, Ni, and Mn were concentrated in 65-mesh during a grinding time 2 min, while just 2.7 % Al was concentrated from spent lithium-ion batteries which were completely electric discharged after 70 min. Through reductive leaching with H2O2 and H2SO4, leaching efficiency of valuable metals with 65-mesh powder was almost 99 % Co, Mn, Ni, and Li under the conditions of 2 M H2SO4, 5 vol% H2O2, 60 A degrees C, 300 rpm, 50 g/500 mL, and 2 h. After removing some impurities such as Cu, Al, and Fe, the leaching solutions containing Co, Mn, Ni, and Li could be utilized for manufacturing the precursor of cathodic active material of Li-ion battery. The precursor was manufactured by co-precipitation from the filtrate after calibration of Co, Mn, and Ni concentration adding NaOH and NH4OH under the conditions over pH 11, 30 A degrees C, 150 rpm, and 24 h. To maintain the pH, 11 is most important level for making homogeneous spherical Co-Mn-Ni hydroxide.