WHAT DO SIMULATIONS PREDICT FOR THE GALAXY STELLAR MASS FUNCTION AND ITS EVOLUTION IN DIFFERENT ENVIRONMENTS?

被引:20
作者
Vulcani, Benedetta [1 ]
De Lucia, Gabriella [2 ]
Poggianti, Bianca M. [3 ]
Bundy, Kevin [1 ]
More, Surhud [1 ]
Calvi, Rosa [4 ]
机构
[1] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778582, Japan
[2] INAF Astron Observ Trieste, I-34143 Trieste, Italy
[3] INAF Astron Observ Padova, I-35122 Padua, Italy
[4] Univ Padua, Dept Astron, I-35122 Padua, Italy
关键词
galaxies : evolution; galaxies : formation; galaxies : general; galaxies : luminosity function; mass function; DISTANT CLUSTER SURVEY; DARK-MATTER HALOES; ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; TULLY-FISHER RELATION; SIMILAR-TO; LUMINOSITY FUNCTION; STAR-FORMATION; SATELLITE GALAXIES; SURVEY EDISCS;
D O I
10.1088/0004-637X/788/1/57
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a comparison between the observed galaxy stellar mass function and the one predicted from the DeLucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z similar to 0.06), and at intermediate redshift (z similar to 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z similar to 0.6 and in clusters at both redshifts. Above M-* = 10(10.25) M-circle dot , it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M-* = 10(9.4) M-circle dot, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.
引用
收藏
页数:20
相关论文
共 50 条
[31]   Evolution of galaxy stellar masses and star formation rates in the EAGLE simulations [J].
Furlong, M. ;
Bower, R. G. ;
Theuns, T. ;
Schaye, J. ;
Crain, R. A. ;
Schaller, M. ;
Vecchia, C. Dalla ;
Frenk, C. S. ;
McCarthy, I. G. ;
Helly, J. ;
Jenkins, A. ;
Rosas-Guevara, Y. M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (04) :4486-4504
[32]   Galaxy and Mass Assembly (GAMA): maximum-likelihood determination of the luminosity function and its evolution [J].
Loveday, J. ;
Norberg, P. ;
Baldry, I. K. ;
Bland-Hawthorn, J. ;
Brough, S. ;
Brown, M. J. I. ;
Driver, S. P. ;
Kelvin, L. S. ;
Phillipps, S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (02) :1540-1552
[33]   PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z=0-1 [J].
Moustakas, John ;
Coil, Alison L. ;
Aird, James ;
Blanton, Michael R. ;
Cool, Richard J. ;
Eisenstein, Daniel J. ;
Mendez, Alexander J. ;
Wong, Kenneth C. ;
Zhu, Guangtun ;
Arnouts, Stephane .
ASTROPHYSICAL JOURNAL, 2013, 767 (01)
[34]   Shaping the galaxy stellar mass function with supernova- and AGN-driven winds [J].
Puchwein, Ewald ;
Springel, Volker .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (04) :2966-2979
[35]   Modelling galaxy stellar mass evolution from z ∼ 0.8 to today [J].
Wang, Lan ;
Jing, Y. P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 402 (03) :1796-1806
[36]   Galaxy And Mass Assembly: evolution of the Hα luminosity function and star formation rate density up to z < 0.35 [J].
Gunawardhana, M. L. P. ;
Hopkins, A. M. ;
Bland-Hawthorn, J. ;
Brough, S. ;
Sharp, R. ;
Loveday, J. ;
Taylor, E. ;
Jones, D. H. ;
Lara-Lopez, M. A. ;
Bauer, A. E. ;
Colless, M. ;
Owers, M. ;
Baldry, I. K. ;
Lopez-Sanchez, A. R. ;
Foster, C. ;
Bamford, S. ;
Brown, M. J. I. ;
Driver, S. P. ;
Drinkwater, M. J. ;
Liske, J. ;
Meyer, M. ;
Norberg, P. ;
Robotham, A. S. G. ;
Ching, J. H. Y. ;
Cluver, M. E. ;
Croom, S. ;
Kelvin, L. ;
Prescott, M. ;
Steele, O. ;
Thomas, D. ;
Wang, L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 433 (04) :2764-2789
[37]   THE IMPACT OF GAS STRIPPING AND STELLAR MASS LOSS ON SATELLITE GALAXY EVOLUTION [J].
Kimm, Taysun ;
Yi, Sukyoung K. ;
Khochfar, Sadegh .
ASTROPHYSICAL JOURNAL, 2011, 729 (01)
[38]   The galaxy stellar mass-star formation rate relation:: evidence for an evolving stellar initial mass function? [J].
Dave, Romeel .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 385 (01) :147-160
[39]   GAMA/G10-COSMOS/3D-HST Evolution of the galaxy stellar mass function over 12.5 Gyr [J].
Wright, A. H. ;
Driver, S. P. ;
Robotham, A. S. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 480 (03) :3491-3502
[40]   Evolution of the Stellar Mass Function and Infrared Luminosity Function of Galaxies since z=1.2 [J].
Beare, Richard ;
Brown, Michael J. I. ;
Pimbblet, Kevin ;
Taylor, Edward N. .
ASTROPHYSICAL JOURNAL, 2019, 873 (01)