Λ6H Modeled as Λ4H + n + n

被引:0
作者
Gibson, B. F. [1 ]
Afnan, I. R. [2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Flinders Univ S Australia, Sch Chem & Phys Sci, Adelaide, SA 5001, Australia
关键词
LI-6;
D O I
10.1007/s00601-014-0816-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A three-body calculation for the and hypernuclei has been undertaken. The respective cores are . The interactions in the system, modeled as , are reasonably well known. For example, the p n interaction is well determined by the p n scattering data, the -p interaction can be fitted to the binding energy. The -n interaction can be fitted to alpha-n scattering data. For the He-4-n system the s-wave can be modeled alternatively as a repulsive potential or as an attractive potential with a forbidden bound state. We explore these alternatives in He-6, because the interaction comes into play in modeling as well as in our + n + n model of , where the valence neutrons are Pauli blocked from the s-shell of the core nucleus.
引用
收藏
页码:913 / 916
页数:4
相关论文
共 50 条
[31]   Vapor phase homoepitaxial growth of 6H and 4H silicon carbide [J].
Burk, AA ;
Rowland, LB ;
Agarwal, AK ;
Sriram, S ;
Glass, RC ;
Brandt, CD .
SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 :201-204
[32]   Ab initio quasiparticle energies in 2H, 4H, and 6H SiC [J].
Ummels, RTM ;
Bobbert, PA ;
van Haeringen, W .
PHYSICAL REVIEW B, 1998, 58 (11) :6795-6799
[33]   Rectifying contacts to n-type 6H and 4H-SiC [J].
Luckowski, ED ;
IsaacsSmith, T ;
Williams, JR .
SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM, PTS 1-3: 1ST CONFERENCE ON FUTURE SCIENCE & EARTH SCIENCE MISSIONS; 1ST CONFERENCE ON SYNERGISTIC POWER & PROPULSION SYSTEMS TECHNOLOGY; 1ST CONFERENCE ON APPLICATIONS OF THERMOPHYSICS IN MICROGRAVITY; 2ND CONFERENCE ON COMMERCIAL DEVELOPMENT OF SPACE; - 2ND CONFERENCE ON NEXT GENERATION LAUNCH SYSTEMS; 14TH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION, 1997, (387) :851-856
[34]   CVD growth of 3C-SiC on 4H/6H mesas [J].
Neudeck, Philip G. ;
Trunek, Andrew J. ;
Spry, David J. ;
Powell, J. Anthony ;
Du, Hui ;
Skowronski, Marek ;
Huang, Xian Rong ;
Dudley, Michael .
CHEMICAL VAPOR DEPOSITION, 2006, 12 (8-9) :531-540
[35]   Electron mobility models for 4H, 6H, and 3C SiC [J].
Roschke, M ;
Schwierz, F .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (07) :1442-1447
[36]   Electron paramagnetic resonance of the scandium acceptor in 4H and 6H silicon carbide [J].
Spaeth, JM ;
Greulich-Weber, S ;
März, M ;
Mokhov, EN ;
Kalabukhova, EN .
PHYSICA B-CONDENSED MATTER, 1999, 273-4 :667-671
[37]   Characterization of electrically active deep level defects in 4H and 6H SiC [J].
Doyle, JP ;
Aboelfotoh, MO ;
Svensson, BG ;
Schoner, A ;
Nordell, N .
DIAMOND AND RELATED MATERIALS, 1997, 6 (10) :1388-1391
[38]   4H(6H)-SiC表面重构的STM/STS研究 [J].
卢慧 ;
王昊霖 ;
杨德仁 ;
皮孝东 .
真空科学与技术学报, 2023, 43 (03) :191-201
[39]   Electron paramagnetic resonance of the scandium acceptor in 6H and 4H silicon carbide [J].
März, M ;
Greulich-Weber, S ;
Spaeth, JM ;
Mokhov, EN ;
Kalabukhova, EN .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (01) :55-60
[40]   Oxidation kinetics of 3C, 4H, and 6H silicon carbide [J].
Golz, A ;
Horstmann, G ;
vonKamienski, ES ;
Kurz, H .
SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 :633-636