On integral representations of operator fractional Brownian fields

被引:7
作者
Baek, Changryong [1 ]
Didier, Gustavo [2 ]
Pipiras, Vladas [3 ]
机构
[1] Sungkyunkwan Univ, Dept Stat, Seoul 110745, South Korea
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
基金
新加坡国家研究基金会;
关键词
Operator fractional Brownian fields; Operator scaling; Operator self-similarity; Harmonizable representations; Moving average representations; Anisotropy;
D O I
10.1016/j.spl.2014.05.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator fractional Brownian fields (OFBFs) are Gaussian, stationary-increment vector random fields that satisfy the operator self-similarity relation {X(c(E)t)}(t is an element of Rm) = (){c(H)X(t)}(t pound is an element of Rm). We establish a general harmonizable representation (Fourier domain stochastic integral) for OFBFs. Under additional assumptions, we also show how the harmonizable representation can be re-expressed as a moving average stochastic integral, thus answering an open problem described in Bierme et al. (2007). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 18 条
[1]  
Bierme H., 2009, P INT C MED IM COMP, P13
[2]   Operator scaling stable random fields [J].
Bierme, Hermine ;
Meerschaert, Mark M. ;
Scheffler, Hans-Peter .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) :312-332
[3]   Self-similar Random Fields and Rescaled Random Balls Models [J].
Bierme, Hermine ;
Estrade, Anne ;
Kaj, Ingemar .
JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) :1110-1141
[4]   Holder regularity for operator scaling stable random fields [J].
Bierme, Hermine ;
Lacaux, Celine .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) :2222-2248
[5]   Anisotropic analysis of some Gaussian models [J].
Bonami, A ;
Estrade, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (03) :215-236
[6]   EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS [J].
Clausel, M. ;
Vedel, B. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) :101-111
[7]  
Clausel M., 2013, ARXIV13020818
[8]   Gaussian Fields Satisfying Simultaneous Operator Scaling Relations [J].
Clausel, Marianne .
RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, :327-341
[9]   Modeling and simulation with operator scaling [J].
Cohen, Serge ;
Meerschaert, Mark M. ;
Rosinski, Jan .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (12) :2390-2411
[10]  
Didier G., 2014, WORKING PAPER, P1