Experimental observation of coincidence Fractional Fourier transform with a partially coherent beam

被引:23
作者
Wang, Fei
Cai, Yangjian
He, Sailing
机构
[1] Zhejiang Univ, Ctr Opt & Electromagnet Res, Hangzhou 310058, Peoples R China
[2] Royal Inst Technol, Joint Res Ctr Photon, SE-10044 Stockholm, Sweden
[3] Zhejiang Univ, SE-10044 Stockholm, Sweden
[4] Royal Inst Technol, Div Electromagnet Engn, Sch Elect Engn, SE-10044 Stockholm, Sweden
关键词
D O I
10.1364/OE.14.006999
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The coincidence Fractional Fourier transform (FRT) is implemented with a partially coherent light source experimentally. The visibility and quality of the coincidence FRT pattern of an object are investigated theoretically. The FRT pattern of an object is obtained by measuring the coincidence counting rate between the detected signals passing through two different optical paths. The experimental results are analyzed and found to be consistent with the theoretical results. (c) 2006 Optical Society of America
引用
收藏
页码:6999 / 7004
页数:6
相关论文
共 16 条
[1]   Coincidence fractional Fourier transform implemented with partially coherent light radiation [J].
Cai, YJ ;
Zhu, SY .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (09) :1798-1804
[2]   Coincidence fractional Fourier transform with entangled photon pairs and incoherent light [J].
Cai, YL ;
Lin, Q ;
Zhu, SY .
APPLIED PHYSICS LETTERS, 2005, 86 (02) :021112-1
[3]   IMAGE ROTATION, WIGNER ROTATION, AND THE FRACTIONAL FOURIER-TRANSFORM [J].
LOHMANN, AW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (10) :2181-2186
[4]  
LOHMANN AW, 1998, PROGR OPTICS, V38
[5]  
Mandel L., 1995, COHERENCE QUANTUM OP
[6]   ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS [J].
MCBRIDE, AC ;
KERR, FH .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) :159-175
[7]   FRACTIONAL FOURIER-TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION .1. [J].
MENDLOVIC, D ;
OZAKTAS, HM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (09) :1875-1881
[8]   NEW SIGNAL REPRESENTATION BASED ON THE FRACTIONAL FOURIER-TRANSFORM - DEFINITIONS [J].
MENDLOVIC, D ;
ZALEVSKY, Z ;
DORSCH, RG ;
BITRAN, Y ;
LOHMANN, AW ;
OZAKTAS, H .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (11) :2424-2431
[9]  
NAMIAS V, 1980, J I MATH APPL, V25, P241
[10]  
Ozaktas H., 2001, The Fractional Fourier Transform with Applications in Optics and Signal Processing