Convergence results for a nonlinear parabolic control problem

被引:5
作者
Arnautu, V
Hömberg, D
Sokolowski, J
机构
[1] Univ Al I Cuza, Fac Math, RO-6600 Iasi, Romania
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[3] Univ Nancy 1, Inst Elie Cartan, Math Lab, F-54506 Vandoeuvre Nancy, France
关键词
parabolic control problem; phase transitions; finite-element approximation;
D O I
10.1080/01630569908816925
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a general control problem for a class of nonlinear parabolic evolution equations. Applications are related to solid-solid and solid-liquid phase transitions. We prove compactness of the solution operator, existence of optimal controls and show convergence of the finite-dimensional approximate control problem to the original one.
引用
收藏
页码:805 / 824
页数:20
相关论文
共 13 条
[2]  
ARNAUTU V, UNPUB NUMERICAL SIMU
[3]  
ARNAUTU V, 1998, AN ST U OVIDIUS CONS, V6, P1
[4]  
BREZIS H, 1971, CONTRIBUTIONS NONLIN
[5]  
FUHRMANN J, IN PRESS INT J NUMER
[6]  
GLOWINSKI R, 1976, ANAL NUMERIQUE INEQU, V1
[7]  
HOMBERG D, 1998, ADV MATH SCI APPL, V8, P911
[8]  
Mazhukin V. I., 1994, Surveys on Mathematics for Industry, V4, P85
[9]  
Mosco U., 1971, CONSTRUCTIVE ASPECTS, VII, P497
[10]   EXISTENCE OF A SOLUTION TO THE STEFAN PROBLEM WITH JOULE HEATING [J].
SHI, P ;
SHILLOR, M ;
XU, XS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) :239-263