AN EXPERIMENTAL STUDY ON THE CONVECTIVE HEAT TRANSFER BEHAVIOUR OF DIAMOND NANOFLUIDS IN ELECTRONIC COOLING APPLICATIONS

被引:0
|
作者
Mashali, Farzin [1 ]
Languri, Ethan M. [1 ]
Davidson, Jim [2 ]
Kerns, David [2 ]
Alkhaldi, Fahad [1 ]
机构
[1] Tennessee Technol Univ, Cookeville, TN 38505 USA
[2] Int FemtoSci Inc, Nashville, TN USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 8A | 2019年
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study presents the convective heat transfer coefficient of 0.05 wt.% diamond nanofluids containing functionalized nanodiamond dispersed in a base fluid deionized (DI) water flowing in a conduction cold plate under turbulent flow conditions, experimentally. The conduction cold plate was heated via six cartridge heaters with a constant heat transfer rate. The primary experimental study has been implemented to investigate the thermal conductivity of diamond nanofluids which showed a higher effective thermal conductivity than that of the base fluid. In addition, nanofluid was flowed in a closed system with heating at the heat exchanger and cooling via a cooling tank to keep the inlet temperature constant to explore the convection heat transfer properties of diamond nanofluids. Results indicate that the convective heat transfer coefficient and Nusselt number of diamond nanofluid are higher than that of the DI water in a same flow rate, and these properties increased with increase in Reynolds number.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Experimental study on convective heat transfer of nanofluids in turbulent flow: Methods of comparison of their performance
    Haghighi, Ehsan B.
    Utomo, Adi T.
    Ghanbarpour, Morteza
    Zavareh, Ashkan I. T.
    Poth, Heiko
    Khodabandeh, Rahmatollah
    Pacek, Andrzej
    Palm, Bjoern E.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 57 : 378 - 387
  • [22] Turbulent Convective Heat Transfer of Nanofluids
    Hosseini, Seyyed Hossein
    Javadi, Seyyed Mohammad
    Ebrahimnia-Bajestan, Ehsan
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3873 - +
  • [23] Diamond Nanofluids: Microstructural Analysis and Heat Transfer Study
    Mashali, Farzin
    Languri, Ethan M.
    Davidson, Jim
    Kerns, David
    HEAT TRANSFER ENGINEERING, 2021, 42 (06) : 479 - 491
  • [24] CHARACTERIZATION AND CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
    Yang, Yijun
    Oztekin, Alparslan
    Neti, Sudhakar
    Mohapatra, Satish
    PROCEEDINGS OF THE ASME/JSME 8TH THERMAL ENGINEERING JOINT CONFERENCE 2011, VOL 3, 2011, : 551 - +
  • [25] Forced convective heat transfer of nanofluids
    Ding, Yulong
    Chen, Haisheng
    He, Yurong
    Lapkin, Alexei
    Yeganeh, Mahboubeh
    Siller, Lidija
    Butenko, Yuriy V.
    ADVANCED POWDER TECHNOLOGY, 2007, 18 (06) : 813 - 824
  • [26] Convective heat transfer of nanofluids with correlations
    Asirvatham, Lazarus Godson
    Raja, Balakrishnan
    Lal, Dhasan Mohan
    Wongwises, Somchai
    PARTICUOLOGY, 2011, 9 (06) : 626 - 631
  • [27] Mechanisms of convective heat transfer of nanofluids
    Wen, Dongsheng
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 591 - 598
  • [28] Experimental study of convective heat transfer of alumina oxide nanofluids in triangle channel with uniform heat flux
    Sahim, Kaprawi
    Puspitasari, Dewi
    Nukman
    Frontiers in Heat and Mass Transfer, 2021, 16
  • [29] An Experimental Study on Nanofluids Convective Heat Transfer Through a Straight Tube under Constant Heat Flux
    Azari, Ahmad
    Kalbasi, Mansour
    Derakhshandeh, Masoud
    Rahimi, Masoud
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2013, 21 (10) : 1082 - 1088
  • [30] Convective heat transfer of nanofluids with correlations
    Lazarus Godson Asirvatham
    Balakrishnan Raja
    Dhasan Mohan Lal
    Somchai Wongwises
    Particuology, 2011, 9 (06) : 626 - 631