AN EXPERIMENTAL STUDY ON THE CONVECTIVE HEAT TRANSFER BEHAVIOUR OF DIAMOND NANOFLUIDS IN ELECTRONIC COOLING APPLICATIONS

被引:0
|
作者
Mashali, Farzin [1 ]
Languri, Ethan M. [1 ]
Davidson, Jim [2 ]
Kerns, David [2 ]
Alkhaldi, Fahad [1 ]
机构
[1] Tennessee Technol Univ, Cookeville, TN 38505 USA
[2] Int FemtoSci Inc, Nashville, TN USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 8A | 2019年
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study presents the convective heat transfer coefficient of 0.05 wt.% diamond nanofluids containing functionalized nanodiamond dispersed in a base fluid deionized (DI) water flowing in a conduction cold plate under turbulent flow conditions, experimentally. The conduction cold plate was heated via six cartridge heaters with a constant heat transfer rate. The primary experimental study has been implemented to investigate the thermal conductivity of diamond nanofluids which showed a higher effective thermal conductivity than that of the base fluid. In addition, nanofluid was flowed in a closed system with heating at the heat exchanger and cooling via a cooling tank to keep the inlet temperature constant to explore the convection heat transfer properties of diamond nanofluids. Results indicate that the convective heat transfer coefficient and Nusselt number of diamond nanofluid are higher than that of the DI water in a same flow rate, and these properties increased with increase in Reynolds number.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] EXPERIMENTAL CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
    Kabelac, S.
    Anoop, K. B.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B, 2008, : 1035 - 1041
  • [2] Heat transfer with nanofluids for electronic cooling
    Department of Production, V R Siddhartha Engineering College, Vijayawada 520007, India
    不详
    不详
    不详
    不详
    不详
    Int J Mater Prod Technol, 2009, 1-2 (158-171):
  • [3] Heat transfer with nanofluids for electronic cooling
    Vasu, V.
    Krishna, K. Rama
    Kumar, A. C. S.
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 34 (1-2): : 158 - 171
  • [4] Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications
    Madhesh, D.
    Kalaiselvam, S.
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2015, 10 (15) : 1194 - 1213
  • [5] Experimental study of forced convective heat transfer of nanofluids in a microchannel
    Anoop, Kanjirakat
    Sadr, Reza
    Yu, Jiwon
    Kang, Seokwon
    Jeon, Saeil
    Banerjee, Debjyoti
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (09) : 1325 - 1330
  • [6] Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment
    Krishna, V. Murali
    Kumar, M. Sandeep
    MATERIALS TODAY-PROCEEDINGS, 2019, 17 : 295 - 302
  • [7] Stable Nanofluids for Convective Heat Transfer Applications
    Chiney, Abhinandan
    Ganvir, Vivek
    Rai, Beena
    Pradip
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [8] Silver/oil Nanofluids in Heat Exchanger An Experimental Study on Convective Heat Transfer
    Hosseini, Komeil
    Ghorbani, Hamid Reza
    ORIENTAL JOURNAL OF CHEMISTRY, 2018, 34 (02) : 1126 - 1129
  • [9] Experimental study on convective heat transfer of TiO2 nanofluids
    M. Vakili
    A. Mohebbi
    H. Hashemipour
    Heat and Mass Transfer, 2013, 49 : 1159 - 1165
  • [10] Experimental study on convective heat transfer of TiO2 nanofluids
    Vakili, M.
    Mohebbi, A.
    Hashemipour, H.
    HEAT AND MASS TRANSFER, 2013, 49 (08) : 1159 - 1165