Proof of the quantum null energy condition

被引:131
作者
Bousso, Raphael [1 ,2 ,3 ]
Fisher, Zachary [1 ,2 ,3 ]
Koeller, Jason [1 ,2 ,3 ]
Leichenauer, Stefan [1 ,2 ,3 ]
Wall, Aron C. [4 ]
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Inst Adv Study, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW D | 2016年 / 93卷 / 02期
基金
美国国家科学基金会;
关键词
BLACK-HOLE; FIELD-THEORIES; ENTROPY; SINGULARITIES; CAUSALITY; SPACETIME; GRAVITY; LAW;
D O I
10.1103/PhysRevD.93.024017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove the quantum null energy condition (QNEC), a lower bound on the stress tensor in terms of the second variation in a null direction of the entropy of a region. The QNEC arose previously as a consequence of the quantum focusing conjecture, a proposal about quantum gravity. The QNEC itself does not involve gravity, so a proof within quantum field theory is possible. Our proof is somewhat nontrivial, suggesting that there may be alternative formulations of quantum field theory that make the QNEC more manifest. Our proof applies to free and super-renormalizable bosonic field theories, and to any points that lie on stationary null surfaces. An example is Minkowski space, where any point p and null vector k(a) define a null plane N (a Rindler horizon). Given any codimension-2 surface Sigma that contains p and lies on N, one can consider the von Neumann entropy S-out of the quantum state restricted to one side of S. A second variation S"(out) can be defined by deforming Sigma along N, in a small neighborhood of p with area A. The QNEC states that < T-kk(p)> >= h ($) over bar /2 pi lim(A -> 0)S"(out/)A.
引用
收藏
页数:16
相关论文
共 51 条
  • [1] [Anonymous], ARXIVGRQC9404039
  • [2] GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS
    BEKENSTE.JD
    [J]. PHYSICAL REVIEW D, 1974, 9 (12): : 3292 - 3300
  • [3] BLACK HOLES AND SECOND LAW
    BEKENSTEIN, JD
    [J]. LETTERE AL NUOVO CIMENTO, 1972, 4 (15): : 737 - +
  • [4] BLACK HOLES AND ENTROPY
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW D, 1973, 7 (08) : 2333 - 2346
  • [5] Entanglement density and gravitational thermodynamics
    Bhattacharya, Jyotirmoy
    Hubeny, Veronika E.
    Rangamani, Mukund
    Takayanagi, Tadashi
    [J]. PHYSICAL REVIEW D, 2015, 91 (10):
  • [6] On the architecture of spacetime geometry
    Bianchi, Eugenio
    Myers, Robert C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
  • [7] DUALITY CONDITION FOR QUANTUM FIELDS
    BISOGNANO, JJ
    WICHMANN, EH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (03) : 303 - 321
  • [8] GEODESIC FOCUSING, ENERGY CONDITIONS AND SINGULARITIES
    BORDE, A
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (02) : 343 - 356
  • [9] A covariant entropy conjecture
    Bousso, R
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 1999, (07): : XIV - 33
  • [10] Bousso R, 1999, J HIGH ENERGY PHYS