LOW VIRIAL PARAMETERS IN MOLECULAR CLOUDS: IMPLICATIONS FOR HIGH-MASS STAR FORMATION AND MAGNETIC FIELDS

被引:237
作者
Kauffmann, Jens [1 ]
Pillai, Thushara [1 ]
Goldsmith, Paul F. [2 ]
机构
[1] CALTECH, Dept Astron, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
ISM: clouds; methods: data analysis; stars: formation; INFRARED-DARK CLOUDS; DENSE CORE POPULATION; COMPETITIVE ACCRETION; STELLAR CLUSTERS; PROTOSTELLAR CANDIDATES; GRAVITATIONAL COLLAPSE; PHYSICAL-PROPERTIES; INITIAL CONDITIONS; DUST CONTINUUM; SIZE RELATION;
D O I
10.1088/0004-637X/779/2/185
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only "supercritical" cloud fragments are able to collapse and form stars. The virial parameter alpha = M-vir/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by alpha less than or similar to 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters alpha greater than or similar to 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters << 2 and compile a catalog of 1325 virial parameter estimates. Low values of a are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable "competitive accretion" in HMSF, constrain some models of "monolithic collapse," and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields similar to 1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.
引用
收藏
页数:14
相关论文
共 83 条
[1]   The Birth Environment of the Solar System [J].
Adams, Fred C. .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 48, 2010, 48 :47-85
[2]   The mass function of dense molecular cores and the origin of the IMF [J].
Alves, J. ;
Lombardi, M. ;
Lada, C. J. .
ASTRONOMY & ASTROPHYSICS, 2007, 462 (01) :L17-L21
[3]   Six myths on the virial theorem for interstellar clouds [J].
Ballesteros-Paredes, Javier .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 372 (01) :443-449
[4]   Coherent dense cores.: I.: NH3 observations [J].
Barranco, JA ;
Goodman, AA .
ASTROPHYSICAL JOURNAL, 1998, 504 (01) :207-222
[5]   The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds [J].
Bate, MR ;
Bonnell, IA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (04) :1201-1221
[6]   The formation mechanism of brown dwarfs [J].
Bate, MR ;
Bonnell, IA ;
Bromm, V .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 332 (03) :L65-U1
[7]   Characterizing precursors to stellar clusters with Herschel [J].
Battersby, C. ;
Bally, J. ;
Ginsburg, A. ;
Bernard, J. -P. ;
Brunt, C. ;
Fuller, G. A. ;
Martin, P. ;
Molinari, S. ;
Mottram, J. ;
Peretto, N. ;
Testi, L. ;
Thompson, M. A. .
ASTRONOMY & ASTROPHYSICS, 2011, 535
[8]   Rotating disks in high-mass young stellar objects [J].
Beltrán, MT ;
Cesaroni, R ;
Neri, R ;
Codella, C ;
Furuya, RS ;
Testi, L ;
Olmi, L .
ASTROPHYSICAL JOURNAL, 2004, 601 (02) :L187-L190
[9]   PRESSURE-CONFINED CLUMPS IN MAGNETIZED MOLECULAR CLOUDS [J].
BERTOLDI, F ;
MCKEE, CF .
ASTROPHYSICAL JOURNAL, 1992, 395 (01) :140-157
[10]   Caught in the act: The onset of massive star formation [J].
Beuther, H ;
Sridharan, TK ;
Saito, M .
ASTROPHYSICAL JOURNAL, 2005, 634 (02) :L185-L188